М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
hellllo
hellllo
10.04.2022 12:50 •  Алгебра

X^2+0,6x+0,09−0,36x^2=0
нужно чтобы было 2 x
x1=
x2=

👇
Ответ:
SimbatDuysebek
SimbatDuysebek
10.04.2022

x² + 0,6x + 0,09 - 0,36x² = 0

0,64x² + 0,6x + 0,09 = 0| * 100

64x² + 60x + 9 = 0

D = 60² - 4 * 64 * 9 = 3600 - 2304 = 1296 = 36²

x₁ = (- 60 - 36)/128 = - 0,75

x₂ = (- 60 + 36)/128 = - 0,1875

4,5(71 оценок)
Ответ:
SomaHin
SomaHin
10.04.2022

x^2+0,6x+0,09-0,36x^2=0

0,64x^2+0,6x+0,09=0

D = b^2-4ac=(0,6)^2-4*0,64*0,09=0,36-0,2304=0,1296

\sqrt{D} =0,36

x_2=\frac{-0,6-0,36}{2*0,64}=-\frac{0,96}{1,28} = -\frac{96}{128}= -0,75

x_1=\frac{-0,6+0,36}{2*0,64} = -\frac{0,24}{1,28} =- \frac{24}{128}= -0,1875=-0,19

ответ: -0,75; -0,19

4,7(45 оценок)
Открыть все ответы
Ответ:
волосы1
волосы1
10.04.2022
1) 1996² = (2 000-4)² = 2000² - 2*2000*4 + 4² = 4 000 000 -16 000 + 16 =
= 3 984 016 

2) a³+a²b+ab²-b³ = a²(a+b)-b²(a+b) = (a+b)(a²-b²) = (a+b)(a-b)(a+b) = 
= (a+b)²(a-b)
(a+b)²(a-b) = (11,6 + (-1,6))²(11,6 - (-1,6)) = (11,6-1,6)²(11,6+1,6) = 
= 10² * 13,2 = 100 * 13,2 = 1320
ответ: а)

3) х-у=4; ху=12
х = 4+у
у(4+у)=12
4у+у²=12
у²+4у-12=0
D=16+48=64
у₁ = -4-8 / 2 = -6
у₂ = -4+8 / 2 = 2
х₁ = 4+(-6) = 4-6 = -2
х₂ = 4+2 = 6
х²+у² = (-6)²+2² = 36+4 = 40
ответ: а)

4) b - 1/b = 2,5 (возведем в квадрат обе части)
b² - 2 * b * 1/b + 1/b² = 6,25
b² + 1/b² = 6,25-2
b² + 1/b² = 4,25
ответ: б)
4,4(23 оценок)
Ответ:
hjhytu
hjhytu
10.04.2022

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
4,6(34 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ