М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
асель117
асель117
28.02.2021 08:35 •  Алгебра

Арифметическая прогрессия (an) задана условиями a1=27,аn+1=an-15 найдите сумму вервых семи её членов​

👇
Ответ:
катябэд37
катябэд37
28.02.2021
Для решения задачи нам понадобятся знания о формуле общего члена арифметической прогрессии и формуле суммы первых n членов этой прогрессии.

Формула общего члена арифметической прогрессии:
an = a1 + (n-1)d,

где an - n-й член прогрессии,
a1 - первый член прогрессии,
d - разность прогрессии.

В нашем случае первый член прогрессии a1 = 27, а условие задачи говорит, что каждый следующий член прогрессии на 15 меньше предыдущего. То есть d = -15.

Теперь мы можем найти любой нужный нам член прогрессии, например, седьмой член (a7).

a7 = a1 + (7-1)(-15) = 27 + 6(-15) = 27 - 90 = -63.

Также нам понадобится формула суммы первых n членов арифметической прогрессии:
Sn = (n/2)(a1 + an),

где Sn - сумма первых n членов прогрессии.

Теперь мы можем найти сумму первых семи членов прогрессии (S7).

S7 = (7/2)(a1 + a7) = (7/2)(27 + (-63)) = (7/2)(-36) = 7(-18) = -126.

Итак, сумма первых семи членов арифметической прогрессии равна -126.
4,7(57 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ