Пусть а1- первый член арифметической прогрессии , d- разность прогрессии. Имеем систему из двух уравнений : а3+а9=6 и а3·а9=135/6 выразим а3 и а9 через первый член и разность прогрессии : а3=а1+2d и a9= a1+8d и подставим в первое уравнение системы , получаем : а1+2d+a1+8d=6 2a1+10d=6 a1+5d=3 a1=3-5d Сделаем подстановку во втором уравнении : (a1+2d)(a1+8d)=6 подставим а1=3-5d и получим (3-5d+2d)(3-5d+8d)=6 (3-3d)(3+3d)=6 9-9d²=6 9d²=3 d²=1/3 d=√1/3=√3/3 или d=-√1|3=√3|3 1) При d=√3/3 а1=3-5·√3/3 По формуле суммы арифметической прогрессии имеем : S15=(2(3-5√3/3)+√3/3·14)/2·15=(9-2√3)·5=45-10√3 2) При d=-√3/3 a1=3+5√3/3 S15=45-10√3
2t^2+t-1=0
t1=(-1-3)/4=-1
t2=(-1+3)/4=1/2
Вернёмся к замене
sinx=-1
x=-Π/2+2Πn, n€Z
sinx=1/2
x1=Π/6+2Πm, m€Z
x2=5Π/6+2Πm, m€Z
ответ: -Π/2+2Πn, n€Z; Π/6+2Πm, 5Π/6+2Πm, m€Z
2) 6cos^2x+cosx-1=0
Пусть t=cosx, где t€[-1;1], тогда
6t^2+t-1=0
t1=(-1-5)/12=-1/2
t2=(-1+5)/12=1/3
Вернёмся к замене:
cosx=-1/2
x=+-arccos(-1/2)+2Πn, n€Z
cosx=1/3
x=+-arccos(1/3)+2Πm, m€Z
ответ: +-arccos(-1/2)+2Πn, n€Z; +-arccos(1/3)+2Πm, m€Z
3) 2cos^2x+sinx+1=0
2(1-sin^2x)+sinx+1=0
-2sin^2x+sinx+3=0
Пусть t=sinx, где t€[-1;1], тогда
-2t^2+t+3=0
t1=(-1-5)/-4=-1,5 посторонний, т.к. t€[-1;1]
t2=(-1+5)/-4=-1
Вернёмся к замене
sinx=-1
x=Π/2+2Πn, n€Z
ответ: Π/2+2Πn, n€Z