1)квадратным корнем из числа a называется такое число b, что b^2=a. 2)Генеральная совокупность - множество, состоящее из объектов, которые имеют определенные свойства, интересующие нас в данной задаче. 3)основные св-ва квадратных корней: 4)решить неравенство - найти такое множество значений некоторой переменной а, что для каждое а из данного множества удовлетворяет условиям неравенства. 5)квадратными называются уравнения вида , где коэффициент а не равен 0 6)арифметический квадратный корень из числа а, где а>=0 называется такое число b, что b=a^2. 7) cлучайная величина - величина, которая в результате какого-либо опыта может принимать случайное, неизвестное заранее значение.
Слово «алгебра» впервые встречается в IX веке в работе хорезмийского математика и астронома Мухамеда бен Муса ал-Хорезми (783-850).
Одна из его работ - "Хисаб ал-джебр вал-мукабала" - была посвящена составлению и решению алгебраических уравнений. Именно от слова "ал-джебр" и произошло слово "алгебра".
Само действие «ал-джебр» обозначает «восстановление» и представляет собой перенос отрицательных членов из одной части уравнения в другую часть уравнения, чтобы в обеих частях были только положительные члены (ученые того времени не признавали отрицательных чисел).
Говоря об истории алгебры, нужно отметить ее буквенную символику, которая вводилась постепенно в течение долгого времени. Например, в XI в. арабский математик ал-Карги ввёл особые знаки для изображения алгебраических величин, именно он обозначил неизвестное число специальным знаком (см. рис.).
В Европе буквенные символы начали вводить в XV–XVI в.в. Сначала ими обозначали только неизвестное, а потом уже и знаков действий. В XVI веке Франсуа Виет обозначил буквой N неизвестное число.
Свой вклад в создание алгебры внесли немецкий ученый Лейбниц, английский математик и физик Ньютон и французский математик Декарт. В России первые упоминания об алгебре относятся к 1703 г. и встречаются в «Арифметике» Л. Ф. Магницкого.