Объяснение: 4. (sin(β-π)×sin(2π-β)×cos(β-2π))/
/(sin(π/2 -β)×ctg(π-β)×ctg(β+ 3π/2)) =
=(sin(-(π-β))×sin(-β+2π)×cosβ)/(cosβ×(-ctgβ)×(-tgβ))=
=(-sinβ×(-sinβ)×cosβ)/(cosβ×ctgβ×tgβ)=(sin²β×cosβ)/(cosβ×1) =sin²β ;
5.
1+sinx×cosx×tgx = 1+ (sinx×cosx×sinx)/cosx= 1+ sin²x =1 + sin²(π/3)=
=1+(√3/2)² = 1+ 3/4 = (4+3)/4 = 7/4.
Здесь sin(π/3) = √3/2.
6. tgα=sinα/cosα , cosα=4/5,
Найдем sinα: sin²α= 1 - cos²α = 1 - (4/5)² = 1- (16/25) = (25-16)/25 =
= 9/25;
sinα = - √(9/25) = -3/5; sinα отрицательный потому что (3π/2)<α<2π ;
tgα= sinα/cosα = -(3/5)/(4/5) = -(3×5)/(5×4) = - 3/4.
Объяснение:
Чтобы найти экстремумы, нужно взять производную и приравнять ее к 0.
y' = 4x^3 - 4*3x^2 - 18*2x = 4x^3 - 12x^2 - 36x = 0
4x(x^2 - 3x - 9) = 0
x1 = 0
Дальше решаем квадратное уравнение
D = 3^2 - 4*1*(-9) = 9 + 36 = 45 = (3√5)^2
x2 = (3 - 3√5)/2 ≈ -1,854 < 0
x3 = (3 + 3√5)/2 ≈ 4,854 > 0
Теперь проверяем максимумы и минимумы.
При x < (3 - 3√5)/2 будет y' < 0, функция убывает.
При x € ((3 - 3√5)/2; 0) будет y' > 0, функция возрастает.
Значит, x2 = (3 - 3√5)/2 - точка минимума.
При x € (0; (3 + 3√5)/2) будет y' < 0, функция убывает.
Значит, x1 = 0 - точка максимума.
При x > (3 + 3√5)/2 будет y' > 0, функция возрастает.
Значит, x3 = (3 + 3√5)/2 - точка минимума.