1) 31,5 часов; 2) 42 часа
Объяснение:
Пусть первый выполнит всю работу за х часов, по 1/х части в час.
За 3 часа он выполнит 3/х часть работы.
Второй выполнит такую же часть 3/х за 4 часа. Значит, за 1 час он выполнит 3/(4х).
А всю работу он выполнит за 4x/3 часов.
А вместе они за 1 час выполнят 1/18 часть работы.
1/x + 3/(4x) = 1/18
4/(4x) + 3/(4x) = 1/18
7/(4x) = 1/18
4x = 7*18 = 126
x = 126/4 = 31,5 час - за столько выполнит работу первый работник.
4x/3 = 126/3 = 42 часа - за столько выполнит работу второй работник.
Объяснение:
1)x4 + 13x2 + 36 = 0
Сделаем замену y = x2, тогда биквадратное уравнение примет вид
y2 + 13y + 36 = 0
Для решения этого квадратного уравнения найдем дискриминант:
D = b2 - 4ac = 132 - 4·1·36 = 169 - 144 = 25
y1 = -13 - √25 = -9
2·1
y2 = -13 + √25 = -4
2·1
x2 = -9
x2 = -4
2)25x4 + 16x2 + 9 = 0
Сделаем замену y = x2, тогда биквадратное уравнение примет вид
25y2 + 16y + 9 = 0
Для решения этого квадратного уравнения найдем дискриминант:
D = b2 - 4ac = 162 - 4·25·9 = 256 - 900 = -644
ответ: так как дискриминант меньше нуля то корней нет
Иррациональное
Решение
:
1)x+5=0
x+(5-5)= -5
x= -5
2) x= _ 1
5
Введем обозначения:
m(i) - вес i-й гири в наборе.
Пусть задан набор из N гирь. Расположим гири в ряд одну за другой, в порядке возрастания веса каждой гири. Обозначим веса гирь через m(1), m(2), ..., m(N-1), m(N), где m(1) ≤ m(2) ... ≤ m(N-1) ≤ m(N).
По определению среднего веса, средний вес всех гирь равен avg(m) = (1/N)(m(1) + m(2) + ... + m(N-1) + m(N)).
По условию максимальный вес гири (в нашем случае - это m(N)) равен 5*avg(m).
Отсюда следует, что avg(m) = (1/N)(m(1) + m(2) + ... + m(N-1) + 5*avg(m)) (*)
Решив уравнение (*) для avg(m), получим:
(*) <=> (1 - 5/N)*avg(м) = (1/N)(m(1) + m(2) + ... + m(N-1)) <=> avg(m) = (m(1) + m(2) + ... + m(N-1)) / (N - 5) (**)
Заметим, что avg(m) (средняя масса набора гирь) должна быть положительной величиной, т.е. avg(m) > 0 (***) avg(m) не может быть равной 0, т.к. в этом случае все гири должны иметь вес, равный 0, что несуразно. Следовательно, и правая часть уравнения (**) должна быть положительной величиной.
а) Подставив 15 в (**) получим, что avg(m) = (m(1) + m(2) + ... + m(14)) / 10. Такой вариант вполне возможен.
б) Подставив 4 в (**) получим, что avg(m) = (m(1) + m(2) + ... + m(4)) / (-1) = -(m(1) + m(2) + ... + m(4)) ≤ 0, т.е. avg(m) ≤ 0. Т.е. (***) не выполняется. Приходим к противоречию. Следовательно, этот вариант не возможен.
в) Подставив 8 в (**) получим, что avg(m) = (m(1) + m(2) + ... + m(7)) / 3. Такой вариант вполне возможен.
г) Подставив 6 в (**) получим, что avg(m) = (m(1) + m(2) + ... + m(5)) / 1 = m(1) + m(2) + ... + m(5). Такой вариант вполне возможен.
ответ: количество гирь в наборе не может быть равным 4.