Это задача на вычисление площади фигуры через определенный интеграл 1) Надо построить рисунок фигуры площадь которой надо найти а) Графиком функции y=-x^2+2x -будет являться парабола ветви которой направлены вниз (a<0; a=-1) Координаты вершины параболы x=-2/(2(-1))=1 y(1)=1 Точки пересечения параболы с осью абсцисс, найдем решив квадратное уравнение 2x-x^2=0 x(2-x)=0; x=0 x=2 -это числа будут так же пределами интегрирования, (так как y=0 -уравнение оси абсцисс) Площадь искомой фигуры находится интернированием Интеграл вычислен во вложении. Площадь фигуры 4/3 (eд.кв)
1) В принадлежит, если подставишь в y=-3xвместо х абсциссу точки В, а вместо у ординату точки В.
2) ответ номер 3, у=9, так как он параллелен оси х 3)5х+3·0 -15=0 5х-15=0 5х=15 х=3 точка А(3;0) -точка пересечения графика с осью ох. 4)6x-7y+12=0 вместо у подставляем нуль и считаем, 6х-7·0 +12=0 6х=-12 х=-2 это и есть абсцисса В(-2;0) -точка пересечения графика с осью ох.
Объяснение: