а)
(х + 1) м - одна часть
х (м) - другая часть
16 м - всего
1) (х + 1) + х = 16
2х = 16 - 1
2х = 15
х = 7,5 м - меньшая часть
2) 7,5 + 1 = 8,5 м - бОльшая часть.
б)
690 шт. - всего
х шт. - столов
(х + 230) шт. - стульев
1) х + (х + 230) = 690
2х = 690 - 230
2х = 460
х = 230 шт. - столов
2) 230 + 230 = 460 шт. - стульев.
в)
53 чел. - всего
х чел. - девочек
(х + 17) чел. - мальчиков
1) х + (х + 17) = 53
2х = 53 - 17
2х = 36
х = 18 чел. - девочек
2) 18 + 17 = 35 чел. - мальчиков.
Поэтому
т.е
слева от точки 2 подмодульное справа от точки 2 подмодульное
выражение берется со знаком "-" выражение со знаком "+"
- +
--------------------------------------------------------(2)------------------
Аналогично
т.е
слева от точки 4 подмодульное справа от точки 4 подмодульное
выражение берется со знаком "-" выражение со знаком "+"
------------------------------------------------------------------(4)------------------
- +
Изобразим на одной координатной прямой. Причем знаки первого подмодульного выражения будем изображать наверху, знаки второго - внизу
- + +
--------------------------------------(2)--------------------(4)--------------
- - +
Раскрываем модули на (-∞;2].
Оба подмодульных выражения раскрываем с противоположным знаком: |x-2|=-(x-2)=-х+2 ; |x-4|=-(x-4)=-х+4
Уравнение принимает вид:
-x+2-x+4=3
-2х+6=3
-2х=-3
х=3/2
х=1,5
1,5 ∈(-∞;2]
Раскрываем модули на (-2;4]: |x-2|=x-2 ; |x-4|=-(x-4)=-х+4
Уравнение принимает вид:
x-2-x+4=3
2=3 -неверное равенство
Уравнение не имеет корней
Раскрываем модули на (4;+∞).
Оба подмодульных выражения раскрываем не меняют выражения:
|x-2|=x-2 ; |x-4|=x-4
Уравнение принимает вид:
x-2+x-4=3
2х-6=3
2х=9
х=9/2
х=4,5
4,5 ∈(4;+∞)
ответ. 1,5 ; 4,5
Остальные примеры решаются аналогично.
2)
- + +
-----------(-2)-------------(3)------------
+ + -
на (-∞;-2] уравнение принимает вид: -х+2-3(3-х)+х=0 или 3х=7 х= 7/3 - не принадлежит промежутку (-∞;-2), не является корнем уравнения
на (2;3] уравнение принимает вид: х-2-3(3-х)+х=0 или 5х=11 или х=2,2
2,2∈ (2;3] , значит х=2,2 - корень уравнения
на (3;+∞) уравнение принимает вид х-2+3(3-х)+х=0 или х=7
7∈(3;+∞), значит х=7 является корнем уравнения
ответ. 2,2 ; 7
3)
- + +
------------------(1)--------------------(4)----------------
+ + -
на (-∞;1] уравнение принимает вид: 4-х-2х+2=5-2х или х=1
1∈(-∞;1] , значит х=1 - корень уравнения.
на (1;4) уравнение принимает вид: 4-х+2х-2=5-2х или 3х=3 или х=1
1∉(1;4) , на данном промежутке уравнение не имеет корней
на (4;+∞) уравнение принимает вид: -4+х+2х-2=5-2х или 5х=11 или х=2,2
2,2∉(4;+∞) уравнение не имеет корней на данном промежутке
ответ. х=1
5)
|x| - - + +
|3x+2| - + + +
|2x-1| - - - +
------------------(-2/3)-------(0)------------(1/2)---------------
(-∞;-2/3] - x -3x - 2 - 2x +1 = 5 или -6х=6 или х=-1
-1∈(-∞;-2/3] х=-1 - корень уравнения
(-2/3;0] х - 3х - 2 - 2х + 1 = 5 или -4х=6 или х=-3/2
-3/2∉(-2/3;0] х=-1,5 не является корнем уравнения
(0;1/2] x+3x+2-2x+1=5 или 2х=2 или х=1
1∉(0;1/2] х=1 не является корнем уравнения
(1/2;+∞) х+3х+2+2х-1=5 или 6х=4 х= 2/3
2/3∈(1/2;+∞)
ответ. х=-1 ; х=2/3