Пусть длина первоночального прямоугольника равна x см,тогда длина измененного прямоугольника равна (x-14)см.
Пусть ширина первоночального прямоугольника равна y см,тогда ширина измененного прямоугольника равна (y+10)cм.
Известно что периметр первоночального прямоугольника равен 240см,а площадь прямоугольника после изменений увеличится на 4см2(в квадрате)
Составим систему и решим ее:
\left \{ {{2x + 2y =240\atop {(x-14)(y+10)=xy+4
\left \{ {{2y=240-2x}\atop {xy+10x-14y-140=xy=4
\left \{ {{y=120-x\atop {10x-14y=144
10x-14(120-x)=144
10x-1680+14x=144
24x=1680+144
x=76
y=120 - 76=44
ответ:76 см и 44 см.
Пусть длина первоночального прямоугольника равна x см,тогда длина измененного прямоугольника равна (x-14)см.
Пусть ширина первоночального прямоугольника равна y см,тогда ширина измененного прямоугольника равна (y+10)cм.
Известно что периметр первоночального прямоугольника равен 240см,а площадь прямоугольника после изменений увеличится на 4см2(в квадрате)
Составим систему и решим ее:
\left \{ {{2x + 2y =240\atop {(x-14)(y+10)=xy+4
\left \{ {{2y=240-2x}\atop {xy+10x-14y-140=xy=4
\left \{ {{y=120-x\atop {10x-14y=144
10x-14(120-x)=144
10x-1680+14x=144
24x=1680+144
x=76
y=120 - 76=44
ответ:76 см и 44 см.
Вероятность определяется как отношение числа благоприятных исходов к общему числу исходов. Всего исходов 12, так как есть 12 номеров.
A — «номер является чётным числом»
Подходящие номера: 2, 4, 6, 8, 10, 12 - 6 номеров
B — «номер делится на 5»
Подходящие номера: 5, 10 - 2 номера
C — «номер делится на 9»
Подходящий номер: 9 - 1 номер
D — «номер меньше или равен 2»
Подходящие номера: 1, 2 - 2 номера
E — «номер больше, чем 2, и меньше, чем 7»
Подходящие номера: 3, 4, 5, 6 - 4 номера
F — «номер является простым числом»
Подходящие номера: 2, 3, 5, 7, 11 - 5 номеров