Что бы решить данную систему графически: 1) Мы должны начертить на графике 2 функции по отдельности 2) Найти точки/точку пересечения графиков этих функций и определить координату данной\ых точки\точек. Это координата\координаты и будет решением данной системы.
А теперь давайте решим данную систему графически:
Начертим график функции (во вложении, график параболы)
Теперь начертим график функции ( во вложении, график прямой)
Объединяем 2 графика: (график во вложении)
И видим что 2 графика пересекаются в следующих координатах: (0,0) (2,8) Эти координаты и есть решения данной системы.
Задание 2:
{2x+7y=38|*3 {6x+21y=114
{6x-4y=-11 {6x-4y=-11
Вычтем из первого уравнения второе:
21y-(-4y)=114-(-11)
25y=125
y=5
Подставим полученное значение во второе уравнение:
6x-4*5=-11
6x-20=-11
6x=9
x=1,5
ответ:(1,5;5)
Задание 3:
y=kx+b
Составим систему уравнений, подставив в формулу прямой соответствующие значения абцисс и ординат точек:
{k+b=-2,5
{-2k+b=12,5
Вычтем из первого уравнения второе:
k-(-2k)=-2,5-12,5
3k=-15
k=-5
Подставим полученное значение в первое уравнение:
-5+b=-2,5
b=2,5
Итоговая формула:
y=-5x+2,5