Если я, конечно, вычислила правильно, то Вам остаётся только провести координатную прямую, обозначить точки (это строгое неравенство, так что не ошибитесь), а дальше Вы знаете. К сожалению, я не уверена в правильности, очень странные числа, хоть и всё сто раз проверила. Но всё может быть)
Пойдем от противного, предположим что существует такая дробь которая после определенного количества секунд при которых будут выполняться сказанные выше условия будет сокращаться на 11.
1. через н секунд дробь примет вид (н+1)/(3+7*н) . притом и (н+1) и (3+7*н) делятся на 11.
2. так как оба числа кратны 11, то и их разность будет кратна 11, что легко видеть так как числа отличаются на число кратное 11. Также нам не мешает домножить (н+1) на любое натурально число и вычесть из него знаменатель, при этом результат тоже будет кратен 11. Почему так: потому что домножив (н+1) на что-либо оно все равно будет делиться на 11, так как делилось на него изначально, а разность как уже было расмотренно выше тоже будет числом кратным 11.
3. опираясь на доказанное в пункте 2 умножим (н+1) на 7 и вычтем из того что получится знаменатель, т. е (3+7*н) .
7*(н+1)-(3+7*н) =7*н+7-3-7*н=7-3=4
но так же в пункте 2 было рассмотрено что результат этого должен делиться на 11, но 4 на 11 не делиться. Мы пришли к противоречию, значит конца света бояться не надо)
-4 < 9a + 5/6 < 3
-4 < 9а + 5/6;
9а + 5/6 < 3;
-4 - 9а - 5/6 < 0;
9а + 5/6 - 3 < 0;
-24 - 54а - 5 < 0;
54a + 5 - 18 < 0;
-54а - 29 < 0;
54а - 13 < 0;
-54а < 29;
54а < 13;
54а > -29;
54а < 13;
а > -29/54;
а < 13/54…
Если я, конечно, вычислила правильно, то Вам остаётся только провести координатную прямую, обозначить точки (это строгое неравенство, так что не ошибитесь), а дальше Вы знаете. К сожалению, я не уверена в правильности, очень странные числа, хоть и всё сто раз проверила. Но всё может быть)