через дискриминант
Объяснение:
например
x2(квадрат)+4x-21=0.
х2(квадрат)-это а 4х-это b -21-это с
находишь дискриминант: D=B2(квадрат)-4ас
если D>=0то находишь х1 х2:
x1=-b-коріньD/2a
x2=-b+коріньD/2a
у=х-4 и y=x+3, графики этих функций параллельны, а система этих уравнений не имеет решений.
Объяснение:
К данному уравнению x−y=4 выбери из предложенных уравнений второе уравнение так, чтобы полученная система не имела решений:
ответ (можно получить, используя построение):
2x−y=5
y+x=−4
y=x+3
Можно не использовать построение, а ответ получить, опираясь на знания)
Для начала все уравнения запишем в виде уравнений функций:
x−y=4 2x−y=5 y+x=−4 y=x+3
-у=4-х -у=5-2х у= -4-х
у=х-4 у=2х-5 у= -х-4
Известно, что система не имеет решений, если графики функций, выраженных этими уравнениями, параллельны.
Известно также, что графики линейных функций параллельны при одинаковых коэффициентах при х.
Смотрим на коэффициенты при х.
у=х-4 и y=x+3, графики этих функций параллельны, а система этих уравнений не имеет решений.
у=х-4 и y=x+3, графики этих функций параллельны, а система этих уравнений не имеет решений.
Объяснение:
К данному уравнению x−y=4 выбери из предложенных уравнений второе уравнение так, чтобы полученная система не имела решений:
ответ (можно получить, используя построение):
2x−y=5
y+x=−4
y=x+3
Можно не использовать построение, а ответ получить, опираясь на знания)
Для начала все уравнения запишем в виде уравнений функций:
x−y=4 2x−y=5 y+x=−4 y=x+3
-у=4-х -у=5-2х у= -4-х
у=х-4 у=2х-5 у= -х-4
Известно, что система не имеет решений, если графики функций, выраженных этими уравнениями, параллельны.
Известно также, что графики линейных функций параллельны при одинаковых коэффициентах при х.
Смотрим на коэффициенты при х.
у=х-4 и y=x+3, графики этих функций параллельны, а система этих уравнений не имеет решений.
a
x
2
+
b
x
+
c
=
0
,
{\displaystyle ax^{2}+bx+c=0,} де
a
≠
0
{\displaystyle a\neq 0},
де x є невідомою змінною, а a, b, і c є сталими відомими числами, такими що a не дорівнює нулю 0. Якщо a = 0, тоді рівняння буде лінійним, а не квадратним рівнянням. Числа a, b, і c є коефіцієнтами рівняння, і аби розрізнити їх можна називати відповідно, квадратичним коефіцієнтом, лінійний коефіцієнтом і вільною сталою.[1]