Скорость Время Расстояние Течение реки 1 км/ч Байдарка с гребцами х км/ч по течению (х+1)км/ч всего 6 км против течения (х-1) км/ч 4,5 ч 6 км
Составляем уравнение: 6 / (х+1) + 6 / (х-1) = 4,5 приводим к общему знаменателю (х+1)(х-1) и отбрасываем его, заметив, что х≠1 и х≠-1 6(х-1)+6(х+1)=4,5(х2-1) 6х-6+6х+6=4,5х2-4,5 4,5х2-12х-4,5=0 |*2/3 3х2-8х-3=0 Д=64+36=100 х(1)=(8+10)/6=3 (км/ч) скорость байдарки с гребцами х(2)=(8-10)/6 = -1/3 < 0 не подходит под условие задачи, скорость >0
Раз прямая является касательной, значит есть точка пересечения, поэтому приравниваем эти два уравнения 28x^2+bx+15=-5x+8 28x^2+(b+5)x+7=0 раз точка касания единственная, значит дескриминант должен равен нулю D=b^2+10b-759 =0 решаем получаем 2 корня b1=-33, b2=23 подставляем в уравнение графика y1=28x^2-33x+15 и y2=28x^2+23x+15
Теперь полученные уравнения касате и графиков опять приравниваем -5х+8=28x^2-33x+15. Корень равен 0.5, т.е абцисса точки касания больше 0
аналогично для второго случая -5х+8=28x^2+23x+15 Решаем, получаем корень -0.5. Это не удовлетворяет, раз абцисса меньше нуля.
Течение реки 1 км/ч
Байдарка с гребцами х км/ч
по течению (х+1)км/ч всего 6 км
против течения (х-1) км/ч 4,5 ч 6 км
Составляем уравнение:
6 / (х+1) + 6 / (х-1) = 4,5
приводим к общему знаменателю (х+1)(х-1) и отбрасываем его, заметив, что х≠1 и х≠-1
6(х-1)+6(х+1)=4,5(х2-1)
6х-6+6х+6=4,5х2-4,5
4,5х2-12х-4,5=0 |*2/3
3х2-8х-3=0
Д=64+36=100
х(1)=(8+10)/6=3 (км/ч) скорость байдарки с гребцами
х(2)=(8-10)/6 = -1/3 < 0 не подходит под условие задачи, скорость >0