6
Объяснение:
tak nado
1) а)√(61,4)≈7,8;
Это число находится на числовой прямой между 7 и 8.
б)√(10)-2≈1,2;
Это число находится на числовой прямой между 1 и 2.
2)
\sqrt{12} y - \sqrt{48} y + \sqrt{108} y =2 \sqrt{3} y - 4 \sqrt{3} y + 6 \sqrt{3} y = 4 \sqrt{3} y
12
y−
48
y+
108
y=2
3
y−4
3
y+6
3
y=4
3
y
3)
\begin{gathered}- 3 \sqrt{5} = - \sqrt{45} \\ - 4 \sqrt{3} = - \sqrt{48} \\ - 2 \sqrt{11} = - \sqrt{44}\end{gathered}
−3
5
=−
45
−4
3
=−
48
−2
11
=−
44
( - \sqrt{48} ) < ( - \sqrt{45}) < (- \sqrt{44} )(−
48
)<(−
45
)<(−
44
)
4)
\sqrt{3} (4 \sqrt{3} - 2 \sqrt{5} ) + \sqrt{60} = 4 \times 3 - 2 \sqrt{15} + 2 \sqrt{15} = 12
3
(4
3
−2
5
)+
60
=4×3−2
15
+2
15
=12
5(
а) При х≤0.
б) см. фото
в) При у=2 х=-4, при у=2,5 х=-6,25
ответ с объяснением:
Мы имеем дело с обычной функцией:
{x - 6y = 1
{5x + 6y = 41
Перенесём -6у направо, получаем:
{x = 1 + 6y
{5x + 6y = 41
Мы знаем, что х = 1 + 6у. Этот "1 + 6у" мы можем подставить во второе уравнение вместо х:
{x = 1 + 6y
{5 * (1 + 6y) + 6y = 41
Решим это уравнение отдельно:
5 * (1 + 6у) + 6у = 41
5 + 30у + 6у = 41
5 + 36у = 41
36у = 41 - 5
36у = 36
у = 1
Возвращаемся в систему:
{x = 1 + 6y
{y = 1
Мы знаем, что y = 1. Подставим его значение (а именно - единицу) в первое уравнение. Получаем:
{x = 1 + 6 * 1
{y = 1
{x = 7
{y = 1
Получается, что решением этой системы уравнением является пара чисел (7; 1). Задание просит нас прибавить х и у, делаем:
7 + 1 = 8
ОТВЕТ: Б
6
Объяснение:
6-6/28=0