Здесь и далее фраза "не нарушая общности" будет означать, что мы можем так перетасовать вертикали и горизонтали, чтобы нужные нам линии имели нужные обозначения.
Пусть на некоторой вертикали (не нарушая общности - на вертикали А) находится 0<k<8 рыцарей (не нарушая общности - на полях с А1 по Аk). Рассмотрим лжеца на поле А8. Поскольку он утверждает, что на его горизонтали больше лжецов, чем на его вертикали, на самом деле это не так. Следовательно, на восьмой горизонтали как минимум k рыцарей (не нарушая общности - на полях с B8 по чётотам-8). Рассмотрим пересечения их вертикалей с первой горизонталью. Если бы на всех этих пересечениях стояли рыцари, то на первой вертикали оказалось бы минимум k+1 рыцарей, и рыцарь на А1 солгал бы. Значит, на каком-то из них (не нарушая общности - на В1) стоит лжец. При этом на вертикали В , согласно утверждению рыцаря с В8, более k рыцарей. Значит, следуя утверждению лжеца с B1, на горизонтали 1 также более k рыцарей. Получается, рыцарь с А1 лжёт. Противоречие.
Парадокс разрешим лишь в том случае, когда на каждой вертикали стоят либо 8 рыцарей, либо 8 лжецов. Из этого, в частности, следует доказываемое утверждение
Решение: Обозначим кольцевой маршрут по времени прохождения автобусов за 1(единицу) тогда интервал ожидания при курсировании 25-ти автобусов составит: 1 : 25=1/25 (времени), равный 100% При увеличении на маршрут 6-ти автобусов, при общем их количестве: 25+6=31 (автобусов), интервал ожидания при курсировании составит: 1 : 31=1/31 (времени), равный х % На основании этих данных, составим пропорцию: 1/25 - 100% 1/31 - х% х=1/31*100 :1/25=100/31 :1/25=100*25/31=2500/31≈80% Отсюда делаем вывод, что при добавлении на маршрут 6-ти автобусов, интервал ожидания уменьшится на : 100% - 80%=20%
Здесь и далее фраза "не нарушая общности" будет означать, что мы можем так перетасовать вертикали и горизонтали, чтобы нужные нам линии имели нужные обозначения.
Пусть на некоторой вертикали (не нарушая общности - на вертикали А) находится 0<k<8 рыцарей (не нарушая общности - на полях с А1 по Аk). Рассмотрим лжеца на поле А8. Поскольку он утверждает, что на его горизонтали больше лжецов, чем на его вертикали, на самом деле это не так. Следовательно, на восьмой горизонтали как минимум k рыцарей (не нарушая общности - на полях с B8 по чётотам-8). Рассмотрим пересечения их вертикалей с первой горизонталью. Если бы на всех этих пересечениях стояли рыцари, то на первой вертикали оказалось бы минимум k+1 рыцарей, и рыцарь на А1 солгал бы. Значит, на каком-то из них (не нарушая общности - на В1) стоит лжец. При этом на вертикали В , согласно утверждению рыцаря с В8, более k рыцарей. Значит, следуя утверждению лжеца с B1, на горизонтали 1 также более k рыцарей. Получается, рыцарь с А1 лжёт. Противоречие.
Парадокс разрешим лишь в том случае, когда на каждой вертикали стоят либо 8 рыцарей, либо 8 лжецов. Из этого, в частности, следует доказываемое утверждение
Объяснение:
Не знаю правильно ли