Объяснение:
Чтобы не путать русскую букву "З" с цифрой "3" - запишем пример в виде:
R A Z
+
A Z
+ Z
______
4 4 4
1)
Получили, что
Z + Z + Z = 4; 3×Z = * 4
Здесь один вариант: Z = 8: 3×4 = 24
2)
Из разряда единиц переносим двойку в разряд десятков.
Получим:
2 + 2×A = *4
Простым подбором получаем;
A = 1; 2 + 2×1 = 04
A = 6; 2 + 2×6 = 10
То есть если нет переноса в разряд сотен, то
R + 0 = 4; R = 4
Если есть, то:
R + 1 = 4; R = 3.
Возвращаемся к прежним обозначениям.
Получили 2 ответа:
Ну во-первых, похоже, что задание записано с ошибкой
Это ряд 2^0+2^1+2^2+...+2^2011+2^2012 или 1+2+2^2+...+2^2011+2^2012
Обычно подобную задачу дают на олимпиаде и связывают с текущим годом, в данном случае 2012.
При перезаписи возникла ошибка, так как степени слились с основанием, поэтиому и получилось что-то вроде 1+2+22+...+22011+22012
Правильный вариант решается через запись 2^2013-1, которая соответствует этому ряду. А для формулы 2^n-1 признак делимости на 3 соблюдяется только для чётных степеней. Поэтому данное число, представленное рядом 2^0+2^1+2^2+...+2^2011+2^2012 не делится на 3.
Но можно решить задачу и с искажённым условием 1+2+22+...+22011+22012
Здесь можно найти зависимость, но она очень сложная и это не школьный уровень. Ряд слагаемых будет следующим:
1+2+22+23+350+351+22011+22012
И число, образованное этой суммой делится на 3!
Я надеюсь что правильно , если нет отпишитесь