)Один из углов при основании равнобедренного треугольника равен 65 градусов, найдите остальные углы треугольника. 65* , 65*, 50*
2)В треугольнике ABC угол B равен 110 градусов, бисектриса углов а и с пересекаются в точке о, найдите угол АОС 145*
3)в прямоугольном треугольнике АВС, уголС равен 90 градусов, угол В 60 гадусов, АВ равняется 15 см. найдите ВС. 7,5см
4)один из углов прямоугольного треугольника равен 60 градусов, а сумма гипотенузы и меньшего катета равна 42 см. найдите гипотенузу 28см
5)на сторонах угла А отмечены точки В и С так что АВ = АС. Через точки В и С проведенны прямые перпендикулярны соответственно к сторонам АВ и АС данного угла и пересекается в точке М. Доказать что МВ=МС.
так как АВ=АС, то треугольник ВАС равнобедренный, следовательно, две высоты треугольника делятся в точке их пересечения в одном и том же отношении, считая от вершин треугольника, а это значит, что ВМ=МС
6)В треугольнике АВС и А1В1С1 углы В и В1 прямые, угол А =А1,сторона АС=А1С1.Найти стороны В1С1 и А1В1 и треугольник А1В1С1 если ВС 17 см АВ 12 см??? ?
x0 = 4
Объяснение:
f(x) = ax^2 + bx + c
По графику мы видим, что f(1) = 6; f(2) = 1; f(3) = -2
Составляем систему:
{ a + b + c = 6
{ 4a + 2b + c = 1
{ 9a + 3b + c = -2
Осталось решить простую линейную систему.
Умножаем 1 уравнение на -4 и складываем его со 2 уравнением.
{ a + b + c = 6
{ 0a - 2b - 3c = -23
{ 9a + 3b + c = -2
Умножаем 1 уравнение на -9 и складываем его с 3 уравнением.
Умножаем 2 уравнение на -1
{ a + b + c = 6
{ 0a + 2b + 3c = 23
{ 0a - 6b - 8c = -56
Умножаем 2 равнение на 3 и складываем его с 3 уравнением.
{ a + b + c = 6
{ 0a + 2b + 3c = 23
{ 0a + 0b + c = 13
c = 13
Подставляем с во 2 уравнение
2b + 3*13 = 23
2b = 23 - 39 = -16
b = -8
Подставляем b и с в 1 уравнение
a - 8 + 13 = 6
a = 6 + 8 - 13 = 1
f(x) = 1x^2 - 8x + 13
Абсцисса вершины:
x0 = -b/(2a) = 8/(2*1) = 4
Ордината вершины:
f(4) = 4^2 - 8*4 + 13 = 16 - 32 + 13 = -3