Первую ещё не придумала, а вот вторая:
Чтобы найти вероятность того, что точка,брошенная в круг, попадёт в треугольник, надо найти отношение площади правильного треугольника к площади окружности
S(треуг)=(а:2*корень(3))/ S 4
S(окруж)=Pі *r^2
Мы знаем связь между стороной правильного треугольника и радиусом описаной окружности:
r=a/корень3
Тогда, вероятность = S(треуг)/ S(окруж)= ((а:2*корень(3))/ S 4) / (Pі *r^2) = ((а:2*корень(3))/ S 4) * (Pі *а^2) /3=(3*корень3)/ 4Pі
Если надо, можно примерно вищитать:
(3*корень3)/ 4Pі = 3*1,73/4*3,14=5,19/12,56=0,41
ответ:0,41
Имеем:f(x)=2x^4-x+1; f'(x)=(2x^4-x+1)'=8x^3-1
Из уравнения f'(x)=0, или 8x^3-1=0, находим стационарные точки функции f(x):
8x^3=1
x^3=1/8
x=1/2=0.5
В данном случае одна стационарная точка.
В интервал [-1, 1] попадает эта точка 1/2. В ней функция принимает значение f(1/2)=f(0.5)=2*(0.5)^4-0.5+1=5/8=0.625.
В крайних точках интервала [-1,1] имеем: f(-1) = 2*(-1)^4-(-1)+1=4; f(1)=2*1^4-1+1=2.
Из трех значений f(1/2)=f(0.5)=0.625, f(-1) =4, f(1) =2 наименьшим является 0.625, а наибольшим 4.
Поэтому минимальное значение функции f(x)=2x^4-x+1в интервале [-1,1] равно 0.625, максимальное 4.