Рассмотрим два числа A и В
Пусть A=a²+b² B=c²+d² Надо доказать что A*B=x²+z²
A*B=(a²+b²)*(c²+d²)=a²c² + a²d² + b²c² + b²d² = (a²c² + b²d²) + (a²d² + b²c²) + 2*abcd - 2*abcd = *
1. * = (a²c² +2*ac*bd +b²d²) + (a²d² - 2*ad*bc+ b²c²) = (ac + bd)² + (ad - bc)²
2. *= (a²c² - 2*ac*bd +b²d²) + (a²d² + 2*ad*cd+ b²c²) = (ac - bd)² + (ad + bc)²
Таким образом нашли x₁₂ = ac + - bd и z₁₂ = ad - + bc
доказали что если каждое из двух чисел представимо в виде суммы квадратов двух натуральных чисел, то их произведение также можно разложить в сумму квадратов двух целых чисел
Уравнения в этом смысле не будут иметь решения, если дискриминант будет меньше 0. Найдем же его!
а) D = b^2-4*a*c
D=16p^2-4*(p-15)*(-3)=16p^2 + 12p - 180
(16p^2 + 12p - 180) должно быть меньше 0. Найдем значение p при 16p^2 + 12p - 180 = 0.
По формуле:
D/4= 36-16*(-180)=2916
p1=(-6+54)/16=3
p2=(-6-54)/16=-3.75
Есть такая формула рахложения квадратного трехчлена на множители : ax 2 + bx+ c = a ( x – x1 ) ( x – x2 ) .
16(p-3)(p+3.75)=0|:16
(p-3)(p+3.75)=0
Если произведение равно 0, то хотя бы один множитель равен 0. Значит :
p-3=0 или p+3.75=0
p=3 p=-3.75
При этих значениях дискриминат равен 0. Нам нужно,чтобы он был меньше. Значит при (p-3)(p+3.75)< 0
Следовательно, -3.75<p<3
Остальные аналогично.
мммммммммммммммм484