В решении.
Объяснение:
Используя шаблон параболы y=x² постройте график функции .
а) y = x²-5
б) у = −x²+3
в) у = (x − 3)²
г) y = (x + 2)² − 6
1) По заданным значениям х и у построить график функции у=х².
2) Вырезать этот график и пользоваться им, как шаблоном.
3) Построить график функции y = x²-5 .
График - парабола со смещённым центром по оси Оу вниз на 5 единиц, ветви направлены вверх.
4) Построить график функции у = −x²+3 .
График - парабола со смещённым центром по оси Оу вверх на 3 единиц, ветви направлены вниз.
5) Построить график функции у = (x − 3)² .
График - парабола со смещённым центром по оси Ох вправо на 3 единицы, ветви направлены вверх.
6) Построить график функции y = (x + 2)² − 6.
График - парабола со смещённым центром по оси Ох влево на 2 единицы и вниз на 6 единиц, ветви направлены вверх.
y'=((x+2)²(x+4)+3)
Но перед этим раскроем скобки
(x+2)²(x+4)+3=(x²+4x+4)(x+4)+3=x³+4x²+4x²+16x+4x+16+3=x³+8x²+20x+19
y'=(x³+8x²+20x+19)'=3x²+16x+20
3x²+16x+20=0
D=16²-4*3*20=256-240=16
x=(-16-4)/6=-20/6=-10/3≈-3,333 - не входит в заданный отрезок [-3;2]
x=(-16+4)/6=-2
Теперь находим значения функции на границах отрезка [-3;2] и в точке x=-2
y(-3)=(-3+2)²(-3+4)+3=1+3=4
y(-2)=(-2+2)²(-2+4)+3=3
y(2)=(2+2)²(2+4)+3=16*6+3=99
Наименьшее значение функции на отрезке [-3;2] равно у=3 при х=-2