№ 1.
Если перед скобками стоит знак минус, то знаки в скобках меняются на противоположные.
1) 5(a - b + c) = 5a - 5b + 5c
5(а - b + c) = 5a - 5b + 5c - тождественно равные выражения;
2) -2(х - 4) = -2х + 8
-2(х - 4) ≠ -2х - 8 - не являются тождественно равными выражениями;
3) (5а - 4) - (2а - 7) = 5а - 4 - 2а + 7 = (5а - 2а) + (7 - 4) = 3а + 3
(5а - 4) - (2а - 7) ≠ 3а - 11 - не являются тождественно равными выражениями.
№ 2.
-12а + (7 - 2а) = -12а + 7 - 2а = (-12а - 2а) + 7 = -14а + 7.
№ 3.
Пусть х - первоначальная цена товара (100%), тогда
х + 0,2х = 1,2х - цена товара после увеличения на 20%
1,2х - 0,2 · 1,2х = 1,2х - 0,24х = 0,96х - цена после снижения на 20%
х - 0,96х = 0,04х - на столь снизилась цена по сравнению с первоначальной
0,04 · 100 = 4% - на столько процентов снизилась начальная цена
ответ: снизилась на 4%.
Графики функций у=kx+l и y=x²+bx+c при k= -3; l= -8; b=7; c=16 пересекаются в точках A(-4; 4) и B(-6; 10).
Объяснение:
у=kx+l y=x²+bx+c A(-4; 4); B(-6; 10)
1)Составим уравнение прямой у=kx+l по формуле:
(х-х₁)/(х₂-х₁) = (у-у₁)/(у₂-у₁)
Значения х и у - координаты точек.
х₁= -4 у₁=4
х₂= -6 у₂=10
Подставляем значения х и у в формулу:
(х-(-4)/(-6)-(-4) = (у-4)/(10-4)
(х+4)/(-2) = (у-4)/6 перемножаем крест-накрест, как в пропорции:
6х+24= -2у+8
2у= -6х+8-24
2у= -6х-16
у= -3х-8, искомое уравнение.
k= -3 l= -8.
2)y=x²+bx+c A(-4; 4); B(-6; 10)
Используя координаты данных точек, составим систему уравнений:
4=(-4)²+b*(-4)+c
10=(-6)²+b*(-6)+c
Произвести необходимые действия:
4=16-4b+c
10=36-6b+c
Выразим с через b в двух уравнениях:
-с=16-4b-4 -с=12-4b
-c=36-6b-10 -c=26-6b
Приравняем правые части уравнений, так как левые равны:
12-4b=26-6b
-4b+6b=26-12
2b=14
b=7
Теперь вычислим с:
-с=12-4b
-с=12-4*7
-с=12-28
-с= -16
с=16
Подставляем полученные значения b и c в уравнение:
у=x²+7x+16, искомое уравнение.
5x−6 < 0
5x < 6
ответ: x < 1,2