радиусы вписанной окружности, проведенные в точки касания, будут _|_ сторонам треугольника,
два радиуса, проведенные к катетам, вырезают из треугольника квадрат со стороной, равной радиусу (r),
оставшиеся части катетов равны, соответственно, a-r и b-r
центр вписанной окружности ---это точка пересечения биссектрис треугольника,
часть биссектрисы, соединяющая центр вписанной окружности и вершину треугольника будет общей гипотенузой двух равных прямоугольных треугольников с катетом = r
если рассмотреть две пары таких равных прямоугольных треугольников, то можно заметить, что c = (a-r) + (b-r)
отсюда c = a + b - 2r
2r = a+b-c
r = (a+b-c)/2
ВАС = 30°;
ВСА = 30°;
АВС = 120°.
Объяснение:
Высота разбивает равнобедренный треугольник на 2 прямоугольных равных между собой.
В прямоугольном ΔABD катет ВD = 5,8 см, а гипотенуза АВ = 11,6 см.
Если 11,6 см : 5,8 см = 2
Получается, что катет равен половине гипотенузы, а это возможно если этот катет лежит против угла в 30°.
ВАС = ВСА = 30°.
Сумма всех углов треугольника всегда равна 180°.
Отсюда:
АВС = 180° - (30° + 30°) = 120°.
ВАС = 30°;
ВСА = 30°;
АВС = 120°.