М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ludamechta
ludamechta
20.04.2020 13:40 •  Алгебра

Изобразите на комплексной плоскости множество точек z, удовлетворяющих условию 2 < |z| < 3

👇
Ответ:
mkazancev228
mkazancev228
20.04.2020

2 < |z| < 3

Распишем модуль:

2 < \sqrt{x^2+y^2} < 3

2^2

Уравнения x^2+y^2=2^2 и x^2+y^2=3^2 - уравнения окружности.

Неравенство x^2+y^2 2^2 определяет часть плоскости вне окружности с радиусом 2.

Неравенство x^2+y^2 определяет часть плоскости внутри окружности с радиусом 3.

Значит, неравенство 2^2 определяет кольцо, ограниченное окружностями с радиусами 2 и 3.


Изобразите на комплексной плоскости множество точек z, удовлетворяющих условию 2 < |z| < 3
4,6(28 оценок)
Открыть все ответы
Ответ:
Чай24
Чай24
20.04.2020
1.Чтобы убедиться в том, что число является корнем уравнения нужно подставить его вместо Х и если получается верное равенство - то это корень уравнения. Если же нет, то этот корень не подходит.
Подставляем -2 в первое уравнение.
получиться -2*7+4=-10.
-14+4=-10
-10=-10
следовательно, число -2 является корнем уравнения.

Подставим это же число во второе уравнение:
-3*(-2)-5=2*(-2)+5
6-5=5-4
1=1
следовательно, число -2 является корнем и второго уравнения.

2.Решаем уравнения. сначала перенесем все иксы в левую часть и всё остальное - в правую
-5х+1=3х+2
получим:
-8х=1
х=1/-8
сл-но х=-1/8=-0.125
второе уравнение:
8х-6=3х+2
снова перенесем иксы в левую часть:
8х-3х=6+2
5х=8
х=8/5= 1 целая и 3/5
переведем в десятичную дробь:
1 3/5 =1 6/10=1,6.
вот и всё!
4,5(94 оценок)
Ответ:
Inalova77
Inalova77
20.04.2020

Согласно определению периодической функции, функция f (x) является периодической, а число Т ≠ 0 ее периодом, если для любых значений переменной х выполняется равенство f(x) = f(x + Т).

1) f(x) = sin x/4,T = 8π.

Используя тот факт, что функция sin x является периодической с периодом 2π, получаем:

sin ((x + 8π)/4) = sin (x/4 + 8π/4) = sin (x/4 + 2π) = sin (x/4).

Следовательно, функция f(x)=sin x/4 является периодической с периодом 8π.

2) f (x) = 3cos2x, T = π.

Используя тот факт, что функция cos x является периодической с периодом 2π, получаем:

3cos(2 * (x + π)) = 3cos(2 * x + 2 * π) = 3cos(2 * x) = 3cos2х.

Следовательно, функция f (x) = 3cos2x является периодической с периодом π.

3) f(x) = tg3x, T= π/3.

Используя тот факт, что функция tg x является периодической с периодом π, получаем:

tg(3 * (x + π/3)) = tg(3 * x + 3π/3) = tg(3x + π) = tg3x.

Следовательно, функция f (x) = tg3x является периодической с периодом π/3.

4) f(x) = ctg x/4, T = 4π.

Используя тот факт, что функция сtg x является периодической с периодом π, получаем:

сtg((х + 4π)/4) = ctg(x/4+ 4π/4) = ctg(x/4 + π) = ctgx/4.

Следовательно, функция f (x) = ctg x/4 является периодической с периодом 4π.

:3

4,7(57 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ