М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
БеняФазбер
БеняФазбер
20.10.2022 09:04 •  Алгебра

решить У выражение:
sin π/3 · cos π/12-cos π/3 · sin π/12

👇
Ответ:
Дано выражение: sin (π/3) · cos (π/12) - cos (π/3) · sin (π/12).

Для решения этого выражения, мы можем использовать формулу для синуса и косинуса разности углов:

sin (A - B) = sin A · cos B - cos A · sin B.

Сравнивая это с данной нам формулой, мы видим, что:

A = π/3,
B = π/12.

Подставляя значения в формулу, получаем:

sin (π/3 - π/12) = sin (4π/12 - π/12) = sin (3π/12) = sin (π/4).

Мы знаем, что значение синуса в π/4 равно 1/√2, так как π/4 является промежуточным значением между 0 и π/2 на графике синуса.

Таким образом, ответ на данное выражение равен 1/√2.

Переставляя числа, мы можем записать этот ответ как √2/2, что также является правильным ответом.

Итак, решение данного выражения равно 1/√2 или √2/2.
4,8(62 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ