19 ч 20 мин = 19 1/3 ч 19 1/3 - 9 = 10 1/3 (ч) - время в пути. 10 1/3 ч = 31/3 ч Пусть х км/ч - собственная скорость баржи, тогда (х + 3) км/ч скорость баржи по течению реки, (х - 3) км/ч - скорость баржи против течения реки.
Второй корень не подходит, значит, собственная скорость баржи 15 км/ч. 15 - 3 = 12 (км/ч) - скорость баржи вверх по реке. 60 : 12 = 5 (ч) - шла баржа от пункта А до пункта В. 9 + 5 = 14 (ч) - время, в которое баржа прибыла в пункт В. ответ: в пункт В баржа прибыла в 14 часов.
Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать. В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0
6х - 5у = 11
6х = 11 + 5у 5у = 6х - 11
х = (11+5у)/6 у = (6х-11)/5
- - - - - - - - - - - - - - - - - - - - - - - - - - -
если х = 2
у = (6·2-11)/5 = (12-11)/5 = 1/5 = 0,2
- - - - - - - - -
если у = 2
х = (11+5·2)/6 = (11+10)/6 = 21/6 = 7/2 = 3 1/2 = 3,5
Вiдповiдь: (2; 0,2), (3,5; 2).