Пусть т первый корень уравнения, тогда 2т второй корень уравнения. Подставив значения корней в уравнение ( т и 2т ) получаем систему 2х уравнений с неизвестными т и к. Решив ее, найдем значения первого корня и кожффициента к.
2т^2-кт+4=0 8т^2-2кт+4=0
-4т^2+2кт-8=0 8т^2-2кт+4=0
4т^2-4=0 2т^2-кт+4=0
т=1 или т= -1
Если т=1 то к=6, если т= -1 то к= -6.
Таким образом получили 2 случая:
1) при к=6 корни уравнения ( т и 2т ) равны 1 и 2
2) при к= -6 корни уравнения ( т и 2т ) равны -1 и -2
Периметр всего стадиона по внутреннему краю дорожки: P = 2a + 2πR = 2*100 + 2*3,14*30 = 200+188,4 ≈ 388 (м) Периметр всего стадиона по внешнему краю дорожки: P₁ = 2a + 2π(R+3) = 2*100+2*3,14*33 = 200+207,24 ≈ 407(м) Разница в длине: ΔР = Р₁-Р = 407-388 = 19 (м) Так как бегуны не могут бежать по линии дорожки, то максимально приближенное значение разницы в длине бега по внешней и внутренней стороне дорожки - 18 м.
ответ: на 18 м.
Вообще, если на стандартной 400-метровой дорожке первая дорожка имеет длину 400 м (и ширину вместе с разделительной линией - 1,3 м), то каждая последующая длиннее предыдущей на 7,2 м, поэтому линия старта внешних дорожек смещена вперед по отношению к первой. Тогда длина третьей дорожки будет больше первой на 14,4 м, четвертой - на 21,6 м, восьмой - на 50,4 м.
2т^2-кт+4=0
8т^2-2кт+4=0
-4т^2+2кт-8=0
8т^2-2кт+4=0
4т^2-4=0
2т^2-кт+4=0
т=1 или т= -1
Если т=1 то к=6,
если т= -1 то к= -6.
Таким образом получили 2 случая:
1) при к=6 корни уравнения ( т и 2т ) равны 1 и 2
2) при к= -6 корни уравнения ( т и 2т ) равны -1 и -2
ответ: к=6, х1=1, х2=2 или к= -6, х1= -1, х2= -2