М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Abbszbbs
Abbszbbs
25.09.2022 08:47 •  Алгебра

Даны три множества:
A= {1,2,3,...,128},
B= {1,3,5,7,9,...},
C= {3,5,7,9,11,...,31}.

Выбери верные утверждения:
C⊂A
B⊂C
A⊂B
B⊂A
C⊂B

👇
Ответ:
даша3609
даша3609
25.09.2022
Давай разберем каждое утверждение по очереди.

1. C⊂A - Это утверждение означает, что множество C является подмножеством множества A. Для проверки его достаточно сравнить элементы обоих множеств. Множество C содержит только нечетные числа от 3 до 31, что значит, что все его элементы также содержатся в множестве A, так как множество A содержит все числа от 1 до 128. Поэтому данное утверждение верно.

2. B⊂C - Это утверждение означает, что множество B является подмножеством множества C. Для проверки его достаточно сравнить элементы обоих множеств. Множество B содержит только нечетные числа, начиная с 1, тогда как множество C содержит все нечетные числа от 3 до 31. В множестве B отсутствуют числа 3 и 31, поэтому множество B не является подмножеством множества C. Поэтому данное утверждение неверно.

3. A⊂B - Это утверждение означает, что множество A является подмножеством множества B. Для проверки его достаточно сравнить элементы обоих множеств. Множество A содержит все числа от 1 до 128, включая нечетные и четные числа. Множество B содержит только нечетные числа. Поэтому множество A не является подмножеством множества B. Поэтому данное утверждение неверно.

4. B⊂A - Это утверждение означает, что множество B является подмножеством множества A. Для проверки его достаточно сравнить элементы обоих множеств. Множество B содержит только нечетные числа, которые также являются элементами множества A. Поэтому все элементы множества B содержатся в множестве A, и данное утверждение верно.

5. C⊂B - Это утверждение означает, что множество C является подмножеством множества B. Для проверки его достаточно сравнить элементы обоих множеств. Множество C содержит все нечетные числа от 3 до 31, а множество B содержит все нечетные числа, начиная с 1. Поэтому множество C является подмножеством множества B, так как все его элементы содержатся в множестве B. Поэтому данное утверждение верно.

Итак, верными утверждениями являются:
1. C⊂A
4. B⊂A
5. C⊂B
4,5(19 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ