Функция линейная, если наивысшая степень при переменной равна 1, то есть представима в виде u = a*t + b Поэтому, если нам удастся представить нашу функцию в таком виде, значит нам удастся доказать линейность предложенной функции. Разложим числитель и знаменатель предложенной функции на элементарные множители t^4 - 8*t^2 + 16 = (t^2 - 4)^2 = (t-2)*(t-2)*(t+2)*(t+2) (t+2)*(t^2-4) = (t+2)*(t+2)*(t-2) Таким образом, наша функция имеет вид u=(t-2)*(t-2)*(t+2)*(t+2)/(t+2)*(t+2)*(t-2). А вот теперь ЕСЛИ сомножитель в знаменателе ОТЛИЧЕН ОТ НУЛЯ, на него можно сократить, после сокращения получим u=t-2 то есть в самом деле функция линейная, при этом а=1, b=-2. ОДНАКО, она линейная ТОЛЬКО если действительно наше предположение, то есть при условии t#+-2(при этих значениях некоторые сомножители знаменателя обращаются в 0, а на 0 делить нельзя!). Таким образом ответ u=t-2 , область определения t#+-2
Гораздо интереснее ответить на вопрос А что же с функцией происходит в этих особых точках? В нашем случае всё замечательно, значения исходной функции в этих точках НЕ СУЩЕСТВУЕТ, ОДНАКО пределы как слева, так и справа существуют и равны друг другу. То есть функция практически непрерывная и гладкая, такие функции можно ДОПОЛНИТЬ двумя точками(значения пределов) и функция становится совсем линейной. в нашем случае можно ДОПОЛНИТЬ таким образом u(-2)=-4 u(2)= 0 но это уже совсем другая история и к решению нашей исходной задачи, вообще говоря, не имеет никакого отношения.
6x+3=5x-4(5y+4);
3(2x-3y)-6x=8-y;
Раскрываем скобки по распределительному закону умножения.
6х+3=5х-20у-16;
6х-9у-6х=8-у;
Переносим члены уравнения с неизвестным в левую часть, а известные в правую часть при этом изменяем знак каждого члена на противоположный.
6х-5х+20у=-3-16;
6х-9у-6х+у=8;
Приводим подобные члены уравнения в обеих частях уравнения.
х+20у=-19;
-8у=8;
Находим переменную у во втором уравнении.
х+20у=-19;
у=8:(-8);
х+20у=-19;
у=-1;
Подставляем значение переменной у в первое уравнение.
х+20*(-1)=-19;
х-20=-19;
х=-19+20;
х=1;
ответ: (1;-1).
Объяснение: