14 ч 20 мин - 14 ч = 20 мин = 20/60 ч = 1/3 ч - время движения до встречи;
20 : 1/3 = 20 · 3/1 = 60 км/ч - скорость сближения
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Пусть х км/ч - скорость велосипедиста, тогда (60 - х) км/ч - скорость мотоциклиста. На следующий день мотоциклист был в пути 24 мин = 24/60 ч = 2/5 ч, а велосипедист был в пути (24 - 16) = 8 мин = 8/60 ч = 2/15 ч. Расстояние между ними по прежнему 20 км. Уравнение:
2/15 · х + 2/5 · (60 - х) = 20
2/15х + 24 - 2/5х = 20
2/15х - 6/16х = 20 - 24
-4/15х = -4
х = -4 : (-4/15) (-) : (-) = (+)
х = 4 · 15/4
х = 15
ответ: 15 км/ч.
Пусть х км/ ч скорость второго авто, тогда х+10 (км/ч) скорость первого авто. Расстояние каждый из них в 560 км, по времени составляем уравнение:
560 / х - 560/ (х+10) = 1
Приводим к общему знаменателю х(х+10) и отбрасываем его заметив, что х не=0 и х не=-10
Получаем:
560(х+10)-560х=х(х+10)
560х+5600-560х=х^2+10х
х^2+10х-5600=0
Д= 100+4*5600=22500 , 2 корня
х(1) = (-10+150)/2= 70 х(2)=(-10-150)/2 =-80 не м.б скоростью( не подходит под условие задачи)
70+10=80 км/ч скорость первого авто
ответ: 70 и 80 км/ч скорости автомобилей.
9х-45=72
9х=117
х=13