как нетрудно увидеть, данное уравнение является линейным, вида ax = b. Возможны такие случаи при решении линейных уравнений:
1)Уравнение вида 0x = 0, оно имеет бесконечное множество решенийю Для этого надо, чтобы
a² - 9 = 0 и a + 3 = 0
a² = 9 a = -3
a1 = 3; a2 = -3
Значение a = -3 удовлетворяет данной системе, значит при a = -3 уравнение имеет бесконечное множество решений.
2)Уравнение вида 0x = a, где a≠0. Оно не имеет корней. Для этого случая достаточно, чтобы
a² - 9 = 0 и a + 3 ≠ 0
a ≠ 3
Такое значение мы уже фактически нашли - это a = 3. Итак, при a = 3 уравнение вообще не имеет корней.
3)Уравнение вида ax = b, где a и b отличны от нуля. Тогда данное уравнение имеет, как и положено линейному, один корень, то есть, если a ≠ 3 и a ≠ -3, то данное уравнение имеет корень, задаваемый формулой:
x = (a + 3)(a²-9)
S(1)=1, S(2)=1+3=4, S(3)=1+3+5=9, S(4)=1+3+5+7=16, S(5)=….=25,
Замечаем, что сумма первых n нечётных чисел натурального ряда равна n2 т.е. S(n)=n2. Докажем это м.м.и.
1) для n =1 формула верна.
2) предположим, что она верна для какого-нибудь натурального n=k , т.е. S(k)= k2.
Докажем , что тогда она будет верна и для n=k+1, т.е. S(k+1)=(k+1)2
S(k+1)=1+3+5+…+(2k-1)+(2k+1)=S(k)+(2k+1)=k2+2k+1=(k+1)2.
Следовательно, формула верна для всех натуральных значений n , т.е. S(n)=n2