ответ: 3 решения будет , когда a∈{49} ∪ {4*(10-√51)}
Объяснение:
Рассмотрим уравнение 1 :
(|y-10|+|x+3|-2)*(x^2+y^2-6)=0
Уравнение представляет собой совокупность квадрата с центром в точке: B(-3;10) с половиной диагонали равной 2 и окружность с центром в начале координат и радиусом √6.
Рассмотрим уравнение 2
(x+3)^2+(y-5)^2=a -окружность с центром в точке : A (-3 ;5) и радиусом равным √a (находится на одной вертикали с квадратом из уравнения 1)
На рисунке показаны случаи касания окружности из уравнения к окружности и к квадрату из уравнения 1.
3 решения будет либо когда окружность из уравнения 2 касается квадрата (в 1 точке ) и пересекает окружность уравнения 1 ( в двух точках соответственно) , либо когда касается окружности уравнения и пересекает квадрат ( в двух точках соответственно).
Все обозначения смотрите на рисунке.
Найдем расстояния между центрами:
AB=10-5=5
AO=√(5^2+3^2)=√34
a1=5-2=3 → a=3^2=9
a2=5+2=7 → a=7^2=49
a3=√34-√6=√2* (√17-√3) → a= (√2* (√17-√3) )^2=40-4√51=4*(10-√51)
a4=√34+√6=√2*(√17+√3) → a= (√2*(√17+√3) )^2=4*(10+√51)
Cравним: a1 и a3
3 и √2* (√17-√3)
9 и 40-4*√51
4√51 и 31
816 < 961
Так же очевидно ,что :
a4=√34+√6 >√25+√4 =7=a2
a3=√34-√6<√49=7=a2
a4>a2>a3>a1
Тогда из рисунка видно, что 3 решения получается когда :
a=a3^2=4*(10-√51)
a= a2^2=49
a∈{49} ∪ {4*(10-√51)}
Теперь рассмотрим отдельно то , когда a=0
В этом случае уравнение 2 имеет вид :
(x+3)^2 +(y-5)^2=0
Поскольку квадрат число неотрицательное , то
x=-3 ; y=5
Но эта точка не принадлежит области первого уравнения.
ответ : 3 решения будет , когда a∈{49} ∪ {4*(10-√51)}
x^2=8x-17
x^2-8x+17=0
Д=(-8)^2-4*17=64-68 <0
14x=-49-x^2
X^2+14x+49=0
D=14^2-4*49=196-196=0
x=-14/2=-7
36+17x=-2x^2
2x^2+17x+36=0
D=17^2-4*2*36=289-288=1
x1=-17+1/4=-16/4=-4
x2=-17-1/4=-18/4
7x^2-3x=4
7x^2-3x-4=0
D=-3^2+4*7*4=9+112=121=11^2
x1=3+11/14=1
x2=3-11/14=-8/14
0.81-x^2=0
-x^2=-0.81
x^2=0.81
x=+-0.9
5x+9x^2=0
9x^2+5x=0
x(9x+5)=0
x=0 9x=-5
x=-5/9
1+2x=8x^2
-8x^2+2x+1=0
D=2^2+4*8=4+32=36=6^2
x1=-2+6/-16=-1/4
x2=-2-6/-16=1/2
19x-6x^2-10=0
-6x^2+19x-10=0
D=19^2-4*6*10=361-240=121=11^2
x1=-19+11/-12=-8/-12=2/3
x2=-19-11/-12=2.5
8+2x^2=0
2x^2=-8
x^2=-4 нет корней
40x-25-16x^2=0
-16x^2+40x-25=0
D=40^2-4*16*25=1600-1600=0
x=-40/-32=10/8=5/4
-36-x^2=-12x
-x^2+12x-36=0
D=12^2-4*36=144144=0
x=-12/-2=6