Пусть в шкафу было x книг, а во втором - y книг. Если переставить 10 книг из 1 шкафа во 2-й, то в первом шкафу останется а-10 книг, а во втором шкафу станет б+10 книг. По условию, а-10=б+10 или а=б+20. Если из 2 шкафа переставить в 1-й 44 книги, то в нём останется б-44 книги, а в первом шкафу станет а+44 книги. По условию, а+44=4*(б-44)=4*б-176, или а=4*б-220. Получена система уравнений:
а=б+20
а=4*б-220
Приравнивая оба уравнения, получаем уравнение б+20=4*б-220, или 3*б=240, откуда б=240/3=80 книг - было во 2 шкафу и а=80+20=100 книг - в 1-м. ответ: 100 и 80 книг.
4*4*3=48
Объяснение:
Первая цифра не может начинаться с нуля, поэтому она может быть выбрана из чисел 1,2,3,4. Вторая цифра уже может быть ноль, но мы не можем использовать одну из цифр, которую мы использовали до этого. Поэтому новая цифра может быть выбрана Третья цифра может быть выбрана из оставшихся чисел, соответственно может быть выбрана Следовательно, чтобы узнать количество трехзначных чисел нужно количество перемножить. Получим 48