Теплохід пройшов 30 км проти течії річки та 16 км за течією, витративши на шлях за течією на 30 за менше, ніж на шлях проти течії. Знайдіть власну швидкість теплохода, якщо швидкість течії річки становить 1 км/год
20(x²-6x-9)²=x(x²-4x-9) (x²-6x-9)²-x(x²-4x-9)=0 (x²-6x)²-2(x²-6x)·9+9²-x³+4x²+9x=0 x⁴-12x³+36x²-18x²+108x+81-x³+4x²+9x=0 x⁴-13x³+22x²+117x+81=0 подставив вместо х=-1 убеждаемся, что 1+13+22-117+81=0 - верно Значит х=-1 - корень данного уравнения Делим x⁴-13x³+22x²+117x+81 на (х+1) получим х³-14х²+36х+81 Итак, x⁴-13x³+22x²+117x+81=(х+1)·(х³-14х²+36х+81) корни многочлена х³-14х²+36х+81 следует искать среди делителей свободного коэффициента 81
Это числа ±1;±3;±9 Подставим х=9 и убеждаемся, что 9³-14·9²+36·9+81=81(9-14+4+1)=81·0=0 х=9 - корень данного уравнения х³-14х²+36х+81 делим на (х-9) получим х²-5х-9 Осталось разложить на множители последнее выражение х²-5х-9=0 D=25+36=61 x=(5-√61)/2 или х=(5+√61)/2
Окончательно x⁴-13x³+22x²+117x+81=0 ⇒(х+1)·(х³-14х²+36х+81)=0⇒(х+1)(х-9)(х²-5х-9)=0⇒ х₁=-1 или х₂=9 или x₃=(5-√61)/2 или х₄=(5+√61)/2
20(x²-6x-9)²=x(x²-4x-9) (x²-6x-9)²-x(x²-4x-9)=0 (x²-6x)²-2(x²-6x)·9+9²-x³+4x²+9x=0 x⁴-12x³+36x²-18x²+108x+81-x³+4x²+9x=0 x⁴-13x³+22x²+117x+81=0 подставив вместо х=-1 убеждаемся, что 1+13+22-117+81=0 - верно Значит х=-1 - корень данного уравнения Делим x⁴-13x³+22x²+117x+81 на (х+1) получим х³-14х²+36х+81 Итак, x⁴-13x³+22x²+117x+81=(х+1)·(х³-14х²+36х+81) корни многочлена х³-14х²+36х+81 следует искать среди делителей свободного коэффициента 81
Это числа ±1;±3;±9 Подставим х=9 и убеждаемся, что 9³-14·9²+36·9+81=81(9-14+4+1)=81·0=0 х=9 - корень данного уравнения х³-14х²+36х+81 делим на (х-9) получим х²-5х-9 Осталось разложить на множители последнее выражение х²-5х-9=0 D=25+36=61 x=(5-√61)/2 или х=(5+√61)/2
Окончательно x⁴-13x³+22x²+117x+81=0 ⇒(х+1)·(х³-14х²+36х+81)=0⇒(х+1)(х-9)(х²-5х-9)=0⇒ х₁=-1 или х₂=9 или x₃=(5-√61)/2 или х₄=(5+√61)/2
ответ: собственная скорость теплохода 31 км/ч.
Объяснение:
Пусть собственная скорость теплохода - х. ⇒
x₁=31 x₂=-3 ∉.