ОДЗ неравенства. 12+х-х²≥0; По теореме, обратной теореме Виета, найдем корни уравнения х²-х-12=0, это числа 4 и -3, и тогда -(х+3)*(х-4)≥0, или все равно, что (х+3)*(х-4)≤0
-34
+ - +
здесь решением будет х∈[-3;4]; Сtg3x существует, когда sin3x≠0; т.е. 3х≠πn, n∈Z ; х≠πn/3; n∈Z.
Квадрат котангенса на области определения неотрицателен, а Сtg²3x+4>0, значит, знак неравенства будет зависеть от второго множителя √12+х-х², а он будет неотрицательным на области своего определения. Т.е. х∈[-3;4] . Отбираем из отрезка целые, это -3;-2;-1;0;1;2;3;4
и из этой серии выбрасываем ноль, поскольку он обратит в нуль синус, и котангенс перестанет существовать.) Остается 7 целых чисел./
ответ 7
х₁=-0,8 ,у₁=4,4 х₂=2 , у₂= -4
Объяснение:
х²+у²=20
3х+у=2 у=(2-3х)
х²+(2-3х)²=20
х²+4-12х+9х²=20
10х²-12х-16=0 :2
5х²-6х-8=0
корни ищем по формуле 6±√(36+160) /10
6-√(36+160) /10 6+√(36+160) /10
(6-14)/10 = - 0,8 ( 6+14)/10=2
у=(2-3х)
у=(2-3(-0,8))=4,4 у=(2-3*2)=-4
х₁=-0,8 ,у₁=4,4 х₂=2 , у₂= -4