(1) (2) Прежде всего построим графики заданных функций. (См рис1.FIGURE.png) Далее. Найдем точки пересечения графиков. Из картинки видно, что точки пересечения (Обозначим их А0 и А2) имеют координаты А0(-1; 0) и А2(2; 3). Убедиться в этом можно, подставив уравнения (1) и (2) поочередно координаты точек и проверить, обращаются ли они в верные равенства. строго говоря, для нахождения координат точек пересечения в нашем случае решается система уравнений (1), (2): (1) (2) Два уравнения, два неизвестных.
Приравнивая правые части (1), (2) получаем одно уравнение с одним неизвестным: Приводим подобные слагаемые. (3) Решаем полученное уравнение (3) Соответствующие им значения y1, y2 можно найти, подставив например значения x1, x2 в уравнение (2) Вот мы и получили две точки А0(x1; y1), A2(x2, y2) Они нам понадобятся при простановке пределов интегрирования. Так теперь Разберемся, что получится, если нашу фигуру вращать вокруг оси OX. Смотрим риснуок 2 (FIGURE_OX.png), На котором изображено поперечное сечение, полученной фигуры вращения. Такая "чаша", со стенками переменной толщины. В сечении наша исходная фигура (параболический сегмент) зеркально отразилась относительно оси OX. Точки с координатами (x, y) отразились в точки (x, -y). Соответственно прямая y=x+1 отразилась в y=-x-1, а парабола в параболу . Объем "чаши" будет равен: (4) где объем фигуры ограниченной, параболами и плоскостью перпендикулярной плоскости рисунка и проходящей через прямую . ? , объем конуса ограниченного прямыми и той же плоскостью проходящей через
Если нашу "чашу" без выемки конуса "нашинковать" плоскостями перпендикулярными плоскости рисунка и при этом параллельными плоскости основания конуса, мы разбиваем ее на множество мелких ("блинов") элементарных цилиндров толщиной dx. Объем каждого такого цилиндра будет равен: Суммарный объем будет равен сумме объемов элементарных цилиндров. Переходя к пределу при dx⇒0 получаем: (5) (6) (7) С учетом (7) интеграл (6) равен: (8)
Аналогично объем конуса равен (9) Проделывая вычисления находим: (10) Тогда с учетом (4), (8), (10) искомый объем равен:
Вкратце по 2му пункту смотрите рисунок 3 (FIGURE_OY). Тут наша фигура получилась более "хитрая". Придется, дробить область на части
Сам объем будем искать в виде такой суммы: Объем усеченного "криволинейного конуса" (сечение А9, А1, А2, А8) - Объем конуса (А9, А0, А1) + объем ус. конуса(А2, А3, А5, А7) + объем "криволинейного конуса"(А3, А4, А6, А7) - объем "криволинейного конуса" (А5, А4, А6).
Черт возьми! >5000 символов не лезет. Но надеюсь, принцип ясен.
Х не делится на 3, значит дает в остатке либо 1 либо 2 х=3k+1 или х =3k+2 y не делится на 3, значит дает в остатке либо 1 либо 2 y= 3n +1 или y =3n+2
тогда а= (3k+1)⁴+(3n+1)⁴+1=(3k)⁴+4(3k)³+6(3k)³+4(3k)+1+(3n)⁴+4(3n)³+6(3n)³+4(3n)+1+1 Каждое слагаемое, которое содержит 3k или 3n кратно 3, 1+1+1=3 тоже делится на 3 или а= (3k+2)⁴+(3n+2)⁴+1=(3k)⁴+4(3k)³·2+6(3k)³·2²+4(3k)·2³+16+(3n)⁴+4(3n)³·2+6(3n)³·2²+4(3n)·2³+16+1 Каждое слагаемое, которое содержит 3k или 3n кратно 3, 16+16+1=33 тоже делится на 3 или а= (3k+1)⁴+(3n+2)⁴+1=(3k)⁴+4(3k)³+6(3k)³+4(3k)+1+(3n)⁴+4(3n)³·2+6(3n)³·2²+4(3n)·2³+16+1 Каждое слагаемое, которое содержит 3k или 3n кратно 3, 1+16+1=18 тоже делится на 3 или а= (3k+2)⁴+(3n+1)⁴+1=(3k)⁴+4(3k)³·2+6(3k)³·2²+4(3k)·2³+16+(3n)⁴+4(3n)³+6(3n)³+4(3n)+1+1 Каждое слагаемое , которое содержит 3k или 3n кратно 3, 16+1+1=3 и тоже делится на 3
Объяснение:
а) f'(x)=8*(1/8)*x^7+4*(1/2√x)-5*(-1/x²)+7*1/x=x^7+2/√x+5/x²-5/x
б)f'(x)=(2/3)*3x²-6/2√x+4*(-1/x²)-5*(1/x)=2x²-3/√x-4/x²-5/x