ответ
1) 63/65; 2) -√2/10; 3) √((9+√80)/18); 4) -2√2
1) Косинус разности
cos(a - b) = cos a*cos b + sin a*sin b.
У нас a = arcsin(3/5); sin a = 3/5;
cos a = √(1 - sin^2 a) = √(1 - 9/25) = √(16/25) = 4/5
b = arcsin(5/13); sin b = 5/13;
cos b = √(1 - sin^2 a) = √(1 - 25/169) = √(144/169) = 12/13
sin a = 3/5; sin b = 5/13
Получаем
cos(a - b) = 4/5*12/13 + 3/5*5/13 = 48/65 + 15/65 = 63/65
2) Синус суммы
sin(a + b) = sin a*cos b + cos a*sin b
У нас a = arcctg(1/2); tg a = 1/2;
sin a = √5/5; cos a = 2√5/5.
Проверяем: sin^2 a + cos^2 a = 5/25 + 4*5/25 = 1/5 + 4/5 = 1. Все верно.
Точно также b = arcctg(-1/3); tg b = -1/3;
sin b = √10/10; cos b = -3√10/10
sin^2 b + cos^2 b = 10/100 + 9*10/100 = 1/10 + 9/10 = 1. Все верно.
Получаем
sin(a + b) = √5/5*(-3√10)/10 + 2√5/5*√10/10 = -3√50/50 + 2√50/50 = -√50/50 = -√2/10
3) Косинус половинного угла
cos (a/2) = √((1 + cos a)/2)
У нас a = arcsin(1/9); sin a = 1/9;
cos a = √(1 - sin^2 a) = √(1 - 1/81) = √(80/81) = √80/9
cos (a/2) = √((1 + √80/9)/2) = √((9 + √80)/18)
4) tg a = sin a / cos a
У нас a = arccos(-1/3); cos a = -1/3;
sin a = √(1 - cos^2 a) = √(1 - 1/9) = √(8/9) = √8/3
tg a = (√8/3) / (-1/3) = -√8/3 * 3 = -√8 = -2√2
Пересечение х∈ [1]; х∈ [2], это и есть решение системы неравенств.
Объяснение:
Решить систему неравенств:
|2x-3|<=1
x²-3x+2>=0
Расписываем первое неравенство системой, неравенство с модулем:
-1<=2x-3
2x-3<=1
Решаем первое неравенство системы:
-1<=2x-3
-2х<= -3+1
-2x<= -2
2x>=2 знак меняется
x>=1
x∈[1, +∞), интервал решений первого неравенства системы.
Неравенство нестрогое, скобка квадратная, а при знаках бесконечности скобка всегда круглая.
Решаем второе неравенство системы:
2x-3<=1
2х<=1+3
2x<=4
x<=2
x∈(-∞, 2], интервал решений второго неравенства системы.
Неравенство нестрогое, скобка квадратная, а при знаках бесконечности скобка всегда круглая.
Решим второе неравенство первоначальной системы:
x²-3x+2>=0
Приравняем к нулю и решим как квадратное уравнение:
x²-3x+2=0
D=b²-4ac = 9-8=1 √D=1
х₁=(-b-√D)/2a
х₁=(3-1)/2
х₁=2/2
х₁=1
х₂=(-b+√D)/2a
х₂=(3+1)/2
х₂=4/2
х₂=2
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 1 и х=2, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у>=0 (как в неравенстве), слева и справа от значений х, то есть, решения неравенства в интервале
х∈ (-∞, 1]∪[2, +∞).
Неравенство нестрогое, скобка квадратная, а при знаках бесконечности скобка всегда круглая.
Теперь нужно на числовой оси отметить все интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Все интервалы:
x∈[1, +∞), интервал решений первого неравенства системы.
x∈(-∞, 2], интервал решений второго неравенства системы.
х∈ (-∞, 1]∪[2, +∞), интервал решений второго неравенства первоначальной системы.
Чертим числовую ось, отмечаем значения 1, 2.
Штриховка по первому интервалу от 1 до +бесконечности.
Штриховка по второму интервалу от -бесконечности до 2.
По третьему интервалу штриховка от - бесконечности до 1 и от 2 до + бесконечности.
Пересечение х∈ [1], х∈ [2], это и есть решение системы неравенств.
(П/2;3п/2)- это 2-я и 3-я четверти
Cos t = √(1 - 81/1681) = √1600/1681 = -40/41
tgt = Sint/Cost = 9/41 : (-40/41) = - 9/40
Сtgt = -40/9
ОТВЕТ: -40/9
Объяснение: