1-й мотоциклист, проехав расстояние от А до В, повернул и проехал от В 12км, пока не встретил 2-го мотоциклиста. Возьмем х за расстояние, которое проехал 2-й мотоциклист до встречи с 1-м. Следовательно расстояние от А до В, которое возьмем за у будет равным:
у=х+12.
Когда на обратном пути 1-й мотоциклист, проехав (1/6 у)км расстояния от А, встречает 2-го мотоциклиста (не обгоняет!). Значит расстояние между А и В будет равным:
D(y)=R a<0 Ветки параболы в низ Нули функции -x^2+2x+8=0 D=36 корень из D=6 X1=(-2+6)/-2=-2 точка (-2;0) X2=(-2-6)/-2=4 точка(4;0) Координаты вершин параболы M=-b/2a=-2/-2=1 N=-D/4a=-36/-4=9 точка (1;9) Дальше просто отметь точки и дорисуй параболу f возрастает на промежутке( - бесконечность;1) бесконечность поставь символом :) f понижается на промежутке (1;+бесконечность) Нули (-2;0),(4;0) Функция отрицательна при ( - бесконечность;-2) U (4;+бесконечность)
72км
Объяснение:
1-й мотоциклист, проехав расстояние от А до В, повернул и проехал от В 12км, пока не встретил 2-го мотоциклиста. Возьмем х за расстояние, которое проехал 2-й мотоциклист до встречи с 1-м. Следовательно расстояние от А до В, которое возьмем за у будет равным:
у=х+12.
Когда на обратном пути 1-й мотоциклист, проехав (1/6 у)км расстояния от А, встречает 2-го мотоциклиста (не обгоняет!). Значит расстояние между А и В будет равным:
у=х +1/6 у.
Составляем систему уравнений:
у=х+12
у=х +1/6 у
х+12-х -1/6 у=у-у
12 -1/6 у=0
1/6 у=12
у=12•6=72км - расстояние между пунктами А и В.