первое число дает остаток 1 при делении на 4 значит куб первого числа при делении на 4 даст такой же остаток как и 1 в кубе, т.е как число 1*1*1=1 число 1 при делении на 4 дает остаток 1 итого куб первого числа при делении на 4 даст остаток 1
второе число дает остаток 3 при делении на 4 значит куб второго числа при делении на 4 даст такой же остаток как и 3 в кубе, т.е. как число 3*3*3=27 число 27 при делении на 4 дает остаток 3
сумма кубов первого и второго чисел при делении на 4 даст такой же остаток какой даст при делении на 4 сумма остатков чисел при делении на 4, т.е. как число 1+3=4, так как 4 при делении на 4 дает остаток 0, то сумма кубов этих чисел кратна 4 ---------------------------------- второй
так как первое число при делении на 4 дает остаток 1, то его можно записать в виде 4n+1, где n - некоторое целое число аналогично второе можно записать в виде 4k+3, где k - некоторое целое число
сумма кубов этих чисел а значит сумма кубов делится нацело на 4. Доказано
Объяснение:
1. 4x²-3x=3(12-x)
4x²-3x-36+3x=0
4x²+0·x+(-36)=0, где
a=4 - старший коэффициент;
b=0 - второй коэффициент;
c=-36 - свободный член.
2. a) -12x²+6x+5=0, числовые коэффициенты a,b,c≠0⇒полное квадратное уравнение;
b) x²=6x; x²-6x+0=0, где c=0⇒неполное квадратное уравнение;
c) -x²-6x+15=0, где a,b,c≠0⇒полное квадратное уравнение;
d) 8x²-9x+1=0, где a,b,c≠0⇒полное квадратное уравнение;
e) 3x+4=-2x²; 2x²+3x+4=0, где a,b,c≠0⇒полное квадратное уравнение.
ответ: вариант B.
3. x²-4x+c=0
a) D=b²-4ac; 0=(-4)²-4·1·c; 0=16-4c; 4c=16; c=16/4=4
b) D=0; x₁=(4-√0)/2=2; x₂=(4+√0)/2=2
4. x²-9x-17=0
По формуле Виета:
x₁+x₂=9
x₁·x₂=-17
x₁²+x₂²=(x₁+x₂)²-2x₁x₂=9²-2·(-17)=81+34=115