1) 3х²-124х-84=0
D = 15376 + 1008 = 16384
√D = 128
x₁ = (124+128)\6 = 42
x₂ = (124 - 128)\6 = -⅔
2) 7х²+6х+1=0
D = 8
√D = 2√2
x₁ = (-3 + √2) \ 7
x₂ = (-3 - √2) \ 7
3)(х²+9х+14)/(х²-49) = (x+2)(x+7) \ (x-7)(x+7) = (x+2) \ (x-7)
х²+9х+14 - приведённое
по т. Виета
x₁ + x₂ = -9
x₁ · x₂ = 14
x₁ = -2
x₂ = -7
Следовательно выражение х²+9х+14 раскладывается на множители (x+2)(x+7)
4) (х^2+4х-21)/(2х^2+11х-21) = (x-3)(x+7) \ (x+7)(2x-3) = (x-3)\(2x-3)
a) х^2+4х-21 = 0
D = 100
√D = 10
x₁=3
x₂= -7
х^2+4х-21 = (x - 3)(x+7)
б) 2х^2+11х-21 = (x+7)(2x-3)
у astragorta во втором уравнении ошибка.
Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.
Cкалярное произведение векторов равно сумме произведений их соответствующих проекций: 2*0+2*2=4.
С другой стороны скалярное произведение векторов равно произведению их модулей на косинус угла межде ними. Модуль 1-го вектора равен sqrt(2^2+2^2)+2*sqrt(2), модуль 2-го вектора равен 2. Составляем скалярное произведение: 2*sqrt(2)*2*cosa=4, откуда cos a = sqrt(2)/2. А угол, естественно, равен 45 градусов или pi/4