Поскольку модуль слева это модуль от суммы положительного числа 3 и модуля, то большой модуль положителен и раскрывается как уравнение вида abs(x+2)+3=4 и решается как abs(x+2)=1 и x+2=1 или x-2=-1. а если бы у тебя было бы уравнение abs(abs(x+2)-3)=4, то пришлось бы рассмотреть уравнения abs(x+2)=4 и abs(x+2)=-4 только когда у тебя по модулем находится сумма положительного числа и модуля от выражения, содержащего переменную x ты рассматриваешь уравнение в варианте (заменяешь скобки модуля на обычные скобки) поскольку при сложении положительного числа и модуля какого-либо выражения их сумма не может быть отрицательна.
В решении.
Объяснение:
Решить уравнения:
1) 10/(x+2) + 9/x = 1:
Умножить уравнение на х(х+2), чтобы избавиться от дробного выражения, надписать над числителями дополнительные множители:
=х*10 + (х+2)*9 = х(х+2)*1
Раскрыть скобки:
10х + 9х +18 = х² + 2х
Привести подобные члены:
-х²-2х+19х+18=0
-х²+17х+18=0/-1
х²-17х-18=0, квадратное уравнение, ищем корни:
D=b²-4ac =289+72=361 √D= 19
х₁=(-b-√D)/2a
х₁=(17 - 19)/2
х₁= -2/2
х₁= -1;
х₂=(-b+√D)/2a
х₂=(17 + 19)/2
х₂=36/2
х₂=18;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
2) x/(x+7) - (x-7)/(x-7)= (63-5x)/(x²-49)