Пусть х метров в час - производительность одной бригады, тогда (х + 2) метров в час - производительность другой бригады (которая закончила работу на 1 час раньше). Каждая бригада должна проложить по 40 метров кабеля. Уравнение:
40/х - 40/(х+2) = 1
40 · (х + 2) - 40х = 1 · х · (х + 2)
40х + 80 - 40х = х² + 2х
х² + 2х - 80 = 0
D = b² - 4ac = 2² - 4 · 1 · (-80) = 4 + 320 = 324
√D = √324 = 18
х₁ = (-2-18)/(2·1) = (-20)/2 = -10 (не подходит, так как < 0)
х₂ = (-2+18)/(2·1) = 16/2 = 8 м/ч - производительность одной бригады
8 + 2 = 10 м/ч - производительность другой бригады
ответ: 10 м/ч и 8 м/ч.
Проверка:
40 : 10 = 4 ч - время работы одной бригады
40 : 8 = 5 ч - время работы другой бригады
5 ч - 4 ч = 1 ч - разница
Сначала разберём таблицу. В первой строке - значения выборки, вторая строка - показывает сколько раз каждое значение встречается в выборке. Таким образом полная выборка будет такой: 2; 5; 5; 5; 7; 7; 8; 8; 8; 8. Количество значений в выборке будет равно 10 (это обозначается так n = 10).
1) Среднее арифметическое = (2 · 1 + 5 · 3 + 7 · 2 + 8 · 4) / 10 = 6,3
2) Дисперсия обозначается S² и вычисляется по формуле: сумму разностей квадратов значения выборки и её среднего арифметического поделить на (n-1). Получаем
S² = ( (2 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (7 - 6,3)² + (7 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² ) / 10 - 1 = 4,01
3) Среднее квадратическое отклонение обозначается буквой ω:
ω = √S² = √4,01 = 2,002
4) Мода - это значение встречающееся в выборке чаще других, то есть
мода = 8
Если выборка содержит нечетное количество элементов, медиана равна (n+1)/2-му элементу.
Если выборка содержит четное количество элементов (как в нашем случае), медиана лежит между двумя средними элементами выборки и равна среднему арифметическому, вычисленному по этим двум элементам. То есть
медиана = (7 + 7) / 2 = 7