Я тоже в седьмом, поэтому смогу Если же в самом примере отсутствуют какие либо знаки – значит умножение, например:
3а²в⁴
Сам пример:
Так как здесь все числа перемножаются, то мы сможем переместить их по закону, позволяющему нам это:
(-0,1ab²c)²(100by²) = 0,1 • 100
Если знаешь таблицу умножения и деления на 10 и 0,1, могу не рассказывать, но на всякий пожарный:
х • 10 = запятая перемещается вправо на количество нулей после единицы
х : 10 = запятая перемещается влево на количество нулей после единицы
х • 0,1 = запятая перемещается влево на количество цифр после запятой
х : 0,1 = запятая перемещается вправо на количество цифр после запятой.
(-0,1ab²c)²(100by²) = 0,1 • 100= 10
10а²(b²)²c²by² = 10a²b^5c²y²
ab²c)²(100by² - так как здесь все скобки возводятся во вторую степень, значит все буквы со своими степенями тоже, там где нам буквой степень не написана, там ¹. Здесь мы действием по правилу :
(а²)⁴ = а^8
Степени:
х² • х⁴ = х^6
а⁴ : а³ = а¹ = а
(а²)⁴ = а^8
^ - степень
ответ: (-0,1ab²c)²(100by²) = 10a²b^5c²y²
вспомним что такое модуль
|x| = x x>=0
= -x x<0
Пишем на всякий случай ОДЗ x≠3 и смотрим подмодульное выражение
(x²+x-2)/(x-3) = (x+2)(x-1)/(x-3)
D=1+8 = 9
x12=(-1+-3)/2 = -2 1
смотрим метод интервалов
[-2] [1] (3)
Итак при
1. x∈[-2 1) U (3 + ∞)
|(x²+x-2)/(x-3)| = (x²+x-2)/(x-3)
2. x∈(-∞-2) U [1 3)
|(x²+x-2)/(x-3)| = - (x²+x-2)/(x-3)
решаем полученные уравнения
1. x∈[-2 1] U (3 + ∞)
(x²+x-2)/(x-3) = (x²+x-2)/(x-3) решения все числа на интервалах с учетом одз
x∈[-2 1) U (3 + ∞)
2. x∈(-∞-2) U (1 3)
(x²+x-2)/(x-3) = - (x²+x-2)/(x-3)
2(x²+x-2)/(x-3) = 0
x=1 x=-2 решений нет
ответ x∈[-2 1] U (3 + ∞)