Графиками будут является прямые , к1 не равно к2 поэтому прямые пересекутся, координаты точки пересечения и будут решением системы. Для построения прямой достаточно 2 точек. У=1/3х - 8/3 Пусть Х=0 тогда У=1/3*0 - 8/3= 8/3= -2 2/3 А(0;-2 2/3)
Пусть Х=2 тогда У=1/3*2-8/3= 2/3-2 2/3 = -2. В(2;-2) Через точки А и В проведи прямую
У=2/3х -10/3 Пусть Х =0 у= - 3 1/3 С(0; -3 1/3) Х= 1 У=2/3*1 - 3 1/3= - 2 /2/3 D(1; -2 2/3) Через точки С и D проведи прямую они пересекутся, из точки пересечения опусти перпендикуляры на оси Х и У это и будет решение.
Последовательные натуральные числа образуют арифметическую прогрессию. Ее сумма: Sn = n(a1 + an)/2, где а1 - первый член прогрессии, аn - последний член. По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528. Получается неравенство: 528 > n(1+n)/2 n(1+n) < 1056 n^2 + n - 1056 <0 Найдем корни: Дискриминант: Корень из (1+4•1056) = = корень из (1+4224) = = корень из 4225 = 65 n1 = (-1+65)/2 = 64/2 = 32 n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0 n-32<0 n+32>0
n<32 n>-32 - не подходит, поскольку n >0
1 < n < 32 Это значит, что n= 31.
ответ: 31
Проверка: Если бы n=32, то: (1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
К1=1/3.
3у =2х -10.
У=2/3х -10/3. К2= 2/3
Графиками будут является прямые , к1 не равно к2 поэтому прямые пересекутся, координаты точки пересечения и будут решением системы.
Для построения прямой достаточно 2 точек.
У=1/3х - 8/3
Пусть Х=0 тогда
У=1/3*0 - 8/3= 8/3=
-2 2/3
А(0;-2 2/3)
Пусть Х=2 тогда
У=1/3*2-8/3= 2/3-2 2/3
= -2. В(2;-2)
Через точки А и В проведи прямую
У=2/3х -10/3
Пусть Х =0 у= - 3 1/3
С(0; -3 1/3)
Х= 1 У=2/3*1 - 3 1/3=
- 2 /2/3
D(1; -2 2/3)
Через точки С и D проведи прямую они пересекутся, из точки пересечения опусти перпендикуляры на оси Х и У это и будет решение.
(Прямые пересекутся в 4 четверти Х=2 у= -2)