1) Обозначим за х км/ч — собственную скорость катера (ее скорость в стоячей воде), х > 0.
2) Тогда (х + 2) км/ч — скорость катера при движении по течению реки.
3) (60 : (х + 2)) часов шел катер по реке, (36 : х) часов — по озеру.
4) (60 : (х + 2) + 36 : х) часов ушло у катера на весь путь.
5) По условию задачи весь путь занял 5 часов, поэтому запишем равенство:
60 : (х + 2) + 36 : х = 5.
6) Решаем уравнение:
60х + 36 * (х + 2) = 5х * (х + 2);
60х + 36х + 72 = 5х^2 + 10х;
5х^2 - 86х - 72 = 0.
D = (-86)^2 - 4 * 5 * (-72) = 8836.
х1 = -0,8, х2 = 18.
7) х = 18 км/ч — собственная скорость катера
ответ: 18 км/ч.
ответ: 2 км/час.
Объяснение:
Дано. Катер плыл 2,3 ч по течению
и 3,5 ч против течения.
Всего он проплыл 133,9 км.
Найдите скорость течения, если
собственная скорость катера 23,5 км/ч.
Решение.
Обозначим скорость течения через х км/час.
Тогда скорость катера по течению будет 23,5+х км/час
скорость против течения --- 23,5 - х км/час.
S=vt.
Путь по течению равен
S1= (23,5+х)2.3 = 54.05 +2.3x км.
Путь против течения равен
S2=(23.5-x)3.5 = 82.25-3.5x км.
Весь путь равен 133,9 км.
Составим уравнение:
54,05+2,3х + 82,25-3,5х = 133,9;
2,3х-3,5х = 133,9-54,05-82,25;
-1,2х=-2,4;
х=2 км/час - скорость течения реки.
Сума: -5x^2-4+8x^2-6=3x^2-10
Різниця: -5x^2-4-8x^2-6=-13x^2+2
Объяснение: