F(x)=2ax+|x²-8x+7| x²-8x+7=0 x1+x2=8 U x1*x2=7 x1=1 U x2=7 1)x∈(-∞;1) U (7;∞) f(x)=2ax+x²-8x+7=x²-x(8-2a)+7 a=1⇒ордината вершины -наименьшее значение функции абсцисса вершины равна (8-2a)/2=4-a y=(4-a)²-(4-a)(8-2a)+7=16-8a+a²-32+8a+8a-2a²+7=-a²+8a-9>1 a²-8a+10<0 D=64-40=24 a1=(8-2√6)/2=4-√6 U a2=4+√6 a∈(4-√6;4+√6) 2)x∈[1;7] y=2ax-x²+8x-7=-x²+x(8+2a)-7 абсцисса вершины равна (8+2a)/2=4+a y=-(4+a)²+(4+a)(8+2a)-7=-16-8a-a²+32+8a+8a+2a²-7=a²+8a+9>1 a²+8a+8>0 D=64-32=32 a1=(-8-4√2)/2=-4-2√2 U a2=-4+2√2 a∈(-∞;-4-2√2) U (-4+2√2;∞) ответ a∈(-∞;-4-2√2) U (-4+2√2;4+√6)
15.
А1. √52=√(4×13)=2√13
ответ: 1
А2. х²-4х=0
Сумма корней равна коэффициенту перед х умноженному на -1.
ответ: 4
А3. х²-9=0
Произведения корней равно свободному члену.
ответ: 4
А4. х²=16
х1=4
х2=-4
4-(-4)=8
ответ: 1
А5. Третье уравнение это сумма двух неотрицательной величины и положительной величины. Она не может равняться нулю.
ответ: 3
В1. √(25х²у^5)=5ху²√у
В2. Выражение имеет смысл, следовательно а≤0
При внесении отрицательного числа под корень, за корнем остаётся минус
а√(-а)=-√(-а³)
С1. (a+b)×2/|(a+b)|=-2
ответ: -2
Если будут вопросы – обращайтесь :)