Задание № 2:
Задумано простое трёхзначное число, все цифры которого различны. На какую цифру оно оканчивается, если его последняя цифра равна сумме первых двух?
РЕШЕНИЕ: Всего возможно 10 вариантов: 0123456789.
Четные цифры убираем, иначе число четное. Остаются варианты 13579.
Цифру 5 убираем, иначе число делится на 5. Остаются варианты 1379.
1 убираем, так как 1 нельзя представить в виде суммы двух других цифр. Остаются варианты 379.
Если последняя цифра 3 или 9, то число будет делиться на 3, так как и сумма первых двух цифр в этом случае тоже делится на 3. Число не простое. Тоже не подходит. Остается вариант 7.
ОТВЕТ: 7
5050
Объяснение:
Карл Фридрих Гаусс заметил интересную закономерность, что если сгруппировать числа в пары получается алгоритм , благодаря которому можно быстро сложить числа от 1 до 100 .
Рассмотрим этот алгоритм :
1) Необходимо найти количество пар в ряду натуральных чисел. В нашем ряду 100 чисел , значит количество пар будет :
100 : 2 = 50 пар
2) Необходимо сложить первое и последнее число в ряду , в нашем случае это :
100 + 1 =101
3) Умножить сумму первого и последнего чисел в ряду на количество пар в ряду :
101 * 50= 5050
Получаем , что сумма чисел от 1 до 100 будет 5050
Сегодня этот алгоритм называется - правило Гаусса и широко применяется при устном счете
(a-3)(a+5)-(2a-5) = а^2 +5а -3а -15 -2а +5 = а^2 - 10