Возьмем за S весь объем задания, а за х и у - скорость первого и второго штукатура соответственно тогда первый может выполнить задание за S/x часов, а второй за S/y. S/x +5=S/y S/(x+y)=6 надо найти S/x и S/y
S/y-S/x=5 S=6x+6y S/x =6+6y/x S/y=6+6x/y 6+6y/x-6-6x/y=5 обозначим y/x=z 6z-6/z=5 6z²-6=5z 6z²-5z-6=0 D=5²+4*6*6=169 √D=13 z₁=(5-13)/12=-8/12=-2/3 отбрасываем, так как z не может быть отрицательным z₂=(5+13)/12=-18/12=3/2=1,5 S/x =6+6y/x=6+6z=6+6*1,5=6+9=15 S/y=6+6x/y=6+6/z=6+6/1,5=6+4=10 ответ: 15 и 10 часов
1.
а)x^3-2x = х(х²-2)
б)5a^2-10ab+5b^2 = 5(a^2-2ab+b^2) = 5(a-b)²
в)cm-cn+3m-3n = (cm-cn)+(3m-3n) = с(m-n)+3(m-n) = (с+3)(m-n)
2.
2(p+q)²-p(4q-p)+q² = 3p²+3q² при любых p и q
2(p+q)²-p(4q-p)+q² = 2(p²+2pq+q²) -4pq+p²+q² = 2p²+4pq+2q² -4pq+p²+q² = 3p²+3q²
таким образом, мы привели левую часть к правой, тем самым доказав, что значения выражений будут равны при любых p и q
3.
(x-3)(x+3) = x(x-2)
х²-9=х²-2х
2х=9
х=4,5
ответ: при х=4,5
4.
а)(a-3b)(a+3b)+(2b+a)(a-2b) = (a²-9b²) + (a²-4b²) = 2a²-13b²
б)(p+q)(q-p)(q²+p²) = (q²-p²)(q²+p²) = q⁴-p⁴
5.
x³-27-3x(x-3)=0
(x³-3³)-3x(x-3)=0
воспользуемся формулой разности кубов:
(х-3)(х²+3х+9)-3x(x-3)=0
(х-3)(х²+3х+9-3х)=0
х-3=0 или (х²+3х+9-3х)=0
х=3 х²+9=0
х²=-9 - решений нет
ответ: х=3