М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
romamrn
romamrn
18.03.2021 12:13 •  Алгебра

Назовите коэффициенты a, b и c линейного уравнения с двумя переменными: x−6y+2=0.
а=...
b=...
c=...

👇
Ответ:
Неко6тян
Неко6тян
18.03.2021

Общий вид линейного уравнения с двумя переменными ах+bу+с=0

a=1

b=-6

c=2

4,7(15 оценок)
Ответ:
Диа200426
Диа200426
18.03.2021

Ax + by + c =0

A=1

B=-6

C=2

4,6(40 оценок)
Открыть все ответы
Ответ:
tanyainua
tanyainua
18.03.2021
Для доказательства убывания функции f(x) = xln(x) на интервале (0, 1/е), мы можем использовать производную функции и анализ ее значений.

Шаг 1: Найдем производную функции f(x). Для этого применим правило дифференцирования произведения функций и правило дифференцирования логарифма:

f'(x) = (x * d/dx(ln(x))) + (ln(x) * d/dx(x))

Шаг 2: Вычислим производную ln(x) и производную x.

Производная ln(x) равна 1/x.

Производная x равна 1.

Подставим эти значения в формулу для производной f'(x):

f'(x) = (x * 1/x) + (ln(x) * 1) = 1 + ln(x)

Шаг 3: Чтобы доказать, что функция f(x) = xln(x) убывает на интервале (0, 1/е), нам нужно показать, что производная f'(x) отрицательна на этом интервале.

Подставим значения (0, 1/е) в производную f'(x):

f'(x) = 1 + ln(x)

f'(0) = 1 + ln(0) - логарифм от нуля не существует, поэтому производная в данной точке не определена.

f'(1/е) = 1 + ln(1/е) = 1 - 1 = 0 - производная в точке 1/е равна нулю.

Таким образом, мы видим, что производная f'(x) меняется от положительного значения на интервале (0, 1/е) до нулевого значения в точке 1/е. Далее, она будет положительной для значений x больше 1/е.

Шаг 4: Исходя из информации о производной f'(x), мы можем сделать вывод, что функция f(x) убывает на интервале (0, 1/е). Обоснование этого заключается в следующем:

- При x < 1/е, производная f'(x) больше нуля, что означает, что функция f(x) растет на этом интервале.
- При x = 1/е, производная f'(x) равна нулю, что означает, что функция f(x) имеет точку экстремума (максимума или минимума) в этой точке.
- При x > 1/е, производная f'(x) снова становится положительной, что означает, что функция f(x) начинает расти.

Таким образом, из анализа производной f'(x) и ее значений, мы можем сделать вывод, что функция f(x) = xln(x) убывает на интервале (0, 1/е).
4,5(23 оценок)
Ответ:
Евдокия47
Евдокия47
18.03.2021
Чтобы найти координаты точки пересечения функции y = 1/4 * x - 3 с осью абсцисс, нужно найти значение x, когда y равно нулю. Поскольку точка пересечения находится на оси абсцисс, y будет равно нулю.

Подставим y = 0 в уравнение y = 1/4 * x - 3 и решим его:

0 = 1/4 * x - 3

Добавим 3 к обеим сторонам:

3 = 1/4 * x

Умножим обе стороны на 4:

12 = x

Таким образом, x = 12.

Теперь, чтобы найти координаты точки пересечения, мы имеем x = 12 и y = 0.

Точка пересечения функции y = 1/4 * x - 3 с осью абсцисс имеет координаты (12, 0).
4,6(49 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ