Алгебраическим выражением называется одна или несколько алгебраических величин (чисел и букв), соединенных между собой знаками алгебраических действий: сложения, вычитания, умножения и деления, а также извлечения корня и возведения в целую степень (причём показатели корня и степени должны обязательно быть целыми числами) и знаками последовательности этих действий (обычно скобками различного вида). Количество величин, входящих в алгебраическое выражение, должно быть конечным.[1]
Пример алгебраического выражения:
«Алгебраическое выражение» — понятие синтаксическое, то есть нечто является алгебраическим выражением тогда и только тогда, когда подчиняется некоторым грамматическим правилам (см. Формальная грамматика). Если же буквы в алгебраическом выражении считать переменными, то алгебраическое выражение обретает смысл алгебраической функции.
Понятие алгебраического выражения можно дать и несколько иначе — это комбинация чисел, операторов, группировочных символов (скобок)) и/или свободных и связанных переменных, значение которых известно или может быть определено.
y '(x)= 2*e^(2x) - 5e^(x);
2*e^(2x( -5*e^(x)=0;
e^(x)*(2e^(x) - 5)=0;
e^(x)>0; 2e^(x) - 5 =0;
2*e^(x)=5; e^(x)=5/2; x=ln5/2. Эта точка как раз находится в заданном интервале. В том, что именно здесь будет наимньшее значение функции, можно не сомневаться, Во-первых, это задача В15 из ЕГЭ, ответ должен быть красивый, а это может получиться только при подставлении вместо e^(x) целого числа или десятичной дроби. Подставим значение и найдем миним. значение.
(5/2)^2 -5*5/2 -2= 25/4 -25/2 -2= 6,25 -12,5 -2= - 8,25