2 в России и в России и в России и в России тоже бывает много других стран Европы и России и Америки и Америки и Америки и Америки и Америки и Америки и Америки
Пусть было сделано n обменных операций 1-го типа и k операций 2-го типа (по порядку как они шли в условии). Тогда количество золотых монет в результате изменится на величину -4n+5k=0 т.к. их общее количество не изменилось, а при каждой операции 1-го типа золотых уменьшается на 4, и 2-го типа количество золотых увеличивается на 5. На операции каждого типа количество медных монет увеличивается на 1, значит всего было сделано 45 операций, т.е. n+k=45. Отсюда n=45-k, -4(45-k)+5k=0, k=20, n=25. Аналогично, как с золотыми, количество серебряных изменится на величину 5n-8k=5*25-8*20=125-160=-35. Т.е. количество серебряных монет уменьшилось на 35.
Итак, чтобы уравнение имело смысл, а должно быть больше нуля. По свойству модуля: 1)x^2-5ax=15a 2)x^2-5ax=-15a Решим первое уравнение: x^2-5ax-15a=0 Чтобы квадратное уравнение имело два корня, D(дискриминант) должен быть больше нуля: D=(-5a)^2-4*(-15a)=25a^2+60a=5a(5a+12)>0 +(-2,4)-(0)+
a e (0; + беск.) Нас не устраивает промежуток a e (-беск.; -2,4) 2)x^2-5ax=-15a x^2-5ax+15a=0 D=(-5a)^2-4*15a=25a^2-60a=5a(5a-12)>0 +(0)-(2,4)+ a e (2,4; + беск.) Нас не устраивает промежуток a e (-беск.;0) Объединяя два решения, получаем: ответ: a e (2,4; + беск.)
2 в России и в России и в России и в России тоже бывает много других стран Европы и России и Америки и Америки и Америки и Америки и Америки и Америки и Америки